WDL: The Noob Way

By: Kinji

Lesson 2

Now we move into use of loops, variables and a few other keywords. Make a note of them.

WHILE.. used for loop

IF.... sets a condition

ELSE..... other side of condition

REMOVE..... just what it says

ME..... like "my" refers to entity

TILT

ROLL

PAN.... best explained by example

SCALE_X

SCALE_Y

SCALE_Z..... scale of entity in the x,y,z directions

on_0

on_1

on_2

on_3

on_4

on_5

on_6

on_7

on_8

on_9

on_a

on_anykey

on_b

on_c

on_click

on_client

on_ctrl

on_cud

on_cul

on_cur

on_cuu

on_d

on_e

on_enter

on_enter

on_esc

on_f

on_f1

on_f10

on_f11

on_f12

on_f2

on_f3

on_f4

on_f5

on_f6

on_f7

on_f8

on_f9

on_g

on_h

on_i

on_j

on_join

on_joy1

on_k

on_l

on_load

on_m

on_mouse

on_mouse_left

on_mouse_left

on_mouse_middle

on_mouse_right

on_mouse_right

on_mouse_stop

on_n

on_o

on_p

on_q

on_r

on_s

on_server

on_space

on_string

on_t

on_tab

on_u

on_v

on_w

on_x

on_y

WAIT

LOAD_LEVEL

ENABLE_IMPACT

STRING

MSG_SHOW

Some things that you may need to know is.....

+ adds

- subtracts

= what is on the right is stored in whats one the left

+= adds the value on the right to the value stored of the left and then keeps total

1 means true

0 means false

== true if what is on the left is equal to what is on the right

!= opposite of ==

> greater than

< less than

&& true if both what is on the right and left are true

Nows lets do a few examples before we put some of this into working script. We understand that 1 means true. Here is how a loop is created in a function...

function name

{�while(1)

{

code here

wait(1);

}�}

When this function is called the while lets it know that while (true) keep going and going... do not stop rotating from here to the end. Wait... this is so short of a pause before the script keeps getting read that you can't even tell it has paused. Lets use this loop in a script. We want the entity to rotate when it gets shot. First we will do it without the loop and then with it.

function rotate_ent

{

MY.PAN += 1;

}

ACTION RotateEnt

{�MY.ENABLE_SHOOT = ON;

MY.EVENT = rotate_ent;

}

Now test this. When the entity gets shot it... 1 is added to its pan. If we were to create a loop in that function it would keep adding 1 to it and the result would be that the entity would rotate forever. Put the loop in now and test it....

function rotate_ent

{

WHILE(1)

{

MY.PAN += 1;

WAIT(1);

}

}

ACTION RotateEnt

{�MY.ENABLE_SHOOT = ON;

MY.EVENT = rotate_ent;

}

Now when you shoot the entity it rotates from that point on. YOu have just used your first loop. Let me show you a easy way to use variables in the same way.

var increment = 1;

function rotate_ent

{

while(1)

{

MY.PAN = increment;

increment += 1;

wait(1);

}

}

ACTION RotateEnt

{

MY.ENABLE_SHOOT = ON;

MY.EVENT = rotate_ent;

}

All we did is set up a variable named increment with a value of 1.

Our pan was equal to 1 (increments value) and when we got down to the increment += 1; increment had a value 2 which means pan was then 2. Now it is in a loop so at that point it starts over form the top and goes again.... increment gets a higher value (+1) each time this function cycles. What does this do? Makes the entitys pan keep gaining one and it keeps turning. Try it. It is the same as the other script above except we used a variable.

Now lets try something a little different. Lets use a variable to count how many times the entity gets shot and when it reaches 5 we want the entity to turn transparent. We are gonna put a "IF" in this one. "IF" the entity gets shot 5 times or more then turn transparent.

var MyTime = 0;

function count_down

{�MyTime += 1;

IF(MyTime == 5)

{

MY.TRANSPARENT = ON;

}

}

ACTION CountDown

{

MY.ENABLE_SHOOT = ON;

MY.EVENT = count_down;

}

So, everytime you shoot this entity it goes through the function one time and adds 1 to the variable MyTime. The "IF" checks the value of MyTime everytime the entity is shot also. When the entity gets a value of 5 then the {} that come after the IF will be read. Another way to write that IF would be...

IF(MyTime >= 5) If MyTime is greater than or equal to 5.

Lets take a look at a few more now.... REMOVE, ME, ENABLE_IMPACT.

Another way to "trigger" the event in a action is enable_impact. What this means is that when your char touches the entity then

it will goto the event. The proper way to use the remove is like this... REMOVE(ME); which will do what it says... remove the entity. So lets take a look at a action and function that do that.

function take_ent

{

REMOVE(ME);

}

ACTION CountDown

{

MY.ENABLE_IMPACT = ON;

MY.EVENT = take_ent;

}

Just for reminders sake lets use this same script and put a delayed reaction in there using WAIT.

function take_ent

{

WAIT(100);

REMOVE(ME);

}

ACTION CountDown

{

MY.ENABLE_IMPACT = ON;

MY.EVENT = take_ent;

}

Test that. Understand how WAIT works? Lets continue. Lets trigger this event by both impact and shoot.

ACTION CountDown

{

MY.ENABLE_IMPACT = ON;

MY.ENABLE_SHOOT = ON;

MY.EVENT = take_ent;

}

By repitition some of these should be branded in your mind by now if you are taking the time to write them and test them!

Now lets make it so that when you shoot the entity it expands in x,y,z What you can use for this is scale_x, scale_y, scale_z

Try this....

function grow_x

{

MY.SCALE_X += 1;

}

ACTION growX

{�MY.ENABLE_SHOOT = ON;

MY.EVENT = grow_x;

}

Each time you shoot this entity it grows towards its' x by 1.

We won't spend much time here, I justed wanted to use it in example.

Ok lets use a few more techniques now. Instead of making a action call a function lets make a function that is called from a key on your keyboard. I am sure you noticed the long list of them in the top of this tutorial. We want to make a string that will be displayed when you press W on the keyboard. We want this string to wait for "1" and the go away. Storing a string value is much the same as using var to store a value. The difference is that a string must be contained in " ". So lets make a string and then call it in the function......

string my_str = "You pressed W";

Now just like the variables we used before.. anytime that we use my_str we really are using what is contained in the " ". Now make the function that calls it.....

function A_string

{

msg_show(my_str,1);

}

So using this keyword..... msg_show..... my_str will be displayed for the count of 1. If you change the 1 to a higher number it displays longer. Now we need to call this through the keyboard letter W.

ON_W A_string;

ON_W lets assign the keyboard key W to the function named after it..."A_string" Now run your game and press W. Easy stuff huh? Use the rest of the letters on the keyboard the same way... just be careful not to use a letterthan is being used by another function. Here is what your script looked like together......

string my_str = "You pressed W";

function A_string

{

msg_show(my_str,1);

}

ON_W A_string;

Now lets use this same script and take away the string. This time we are going to use the LOAD_LEVEL keyword. Pick a name of a level.. any one that you are not using to test this. The line to use to load another level is.. LOAD_LEVEL <levelname.wmb>; You are going to create the script that will let you change levels by pressing the W........

function level_cng

{

LOAD_LEVEL <levelname.wmb>;

}

ON_W level_cng;

That was easy enough huh? Just replace the "levelname" with any other level you have started.

Now lets play with PAN, TILT and ROLL. Create 3 different functions. Make one action... when the entity gets shot it will call just one of these functions..... when u have tested it... edit it to make it call another function until you have seen the difference between pan, tilt and roll.

function MyPan

{

while(1)

{

MY.PAN += 1;

wait(1);

}

}

function MyRoll

{

while(1)

{

MY.ROLL += 1;

wait(1);

}

}�

function MyTilt

{

while(1)

{

MY.TILT += 1;

wait(1);

}

}

ACTION test_directions

{

MY.ENABLE_SHOOT = ON;

MY.EVENT = MyPan;

}

Test that then change the event to the other 2 and test them.. make note of which direction each give your entity. Now up to this point you have only called one function at a time... lets do all three at the same time. Make your action call MyPan and then inside of MyPan we will call the other 2 functions so that when MyPan is activated the other two functions will also activate.

function MyPan

{

while(1)

{

MY.PAN += 1;

MyTilt();

MyRoll();

wait(1);

}

}

function MyRoll

{

while(1)

{

MY.ROLL += 1;

wait(1);

}

}�

function MyTilt

{

while(1)

{

MY.TILT += 1;

wait(1);

}

}

ACTION test_directions

{

MY.ENABLE_SHOOT = ON;

MY.EVENT = MyPan;

}

See how I just used the function name and the () to call a function from within a function? Easy stuff huh? Lets take a look at these three functions combined into one function.......

function combined

{

while(1)�{

MY.PAN += 1;

MY.TILT += 1;

MY.ROLL +=1;

wait(1);

}

}

That was even easier. These reason for calling functions from within a function is because you may have 5 prewritten frunctions that you need in one function... instead of rewriting them just call them.

If you feel that you have any questions at this point please reread this page... if all else fails contact me for help. If you feel that these tutorials are helping you then please move on to Lesson 3.

