Techo Labs Level 3

Since we are going to cover allot of material in this section we are going to keep our level construction simple and utilitarian.

[image: image1.png]
1. Elevator to TLlevel2. Level change back to level2

2. Hallway, non discript hallway.

3. Dr.John’s Lab Robot parts and gun parts laying around the room. Computer in corner where if player accesses it, can find Dr. johns experiment logs and his concern about the AI being faulty and that S.A.M. was acting strange at times. Final entry the computer recorded where S.A.M. accessing city data found out about the radical group and found info on where their headquarters is. A key card can be found here, that unlocks the door to the armory.

4. Open area, Clutter of robot parts Dr. John isn’t exactly a neat person, archway between room 3 and 4

5. Armory Locked room, key card in room 3 to open the door. Contains a few weapons and ammo S.A.M didn’t take when he left TechnoLabs with Dr. John.

6. Firing/Target Range Testing range for weapons and robot targeting accuracy. Some stationary and moving targets. Is a counter across this entire room separating the player form the target area.

As you can see, we are going to touch on locked doors and keys and the majority of this level will be setting how to pick up items, setting up our weapons, ammo, shooting guns and hitting targets.

First, set up a new level and build level structures. (I copied over my elevator shaft from TLleve2) texture walls, create the door and light the level, then assign our game script to the level. Not much here so should be easy. By now you should be able to handle a simple level (
[image: image2.png]
Before we get into creating any more scripts, lets organize what we have. Its getting a bit long and we can do some clean up of some of the code.

Organizing our WDL file

In SED, open our game.wdl. Create 3 new files name and save them as:

Events.wdl

Doors.wdl

Player.wdl

Into the events wdl I move all entity event functions, variables and defines associated to those functions. Then I organize it a bit by putting in some separators and comment lines around each function and defines.

[image: image3.png]
For the doors.wdl I move all of the door defines and actions as well as my elevator action to this wdl.

[image: image4.png]
[image: image5.png]
Then for player.wdl I move defines, variables and the player_move action into it.

[image: image6.png]
I then organize what is left in my game.wdl. I also need to add 3 new lines to my game.wdl after the path lines.

[image: image7.png]
(note: the highlighted 3 lines)

We use a new instruction here called INCLUDE. Include allows us to add additional script .wdls to our project. For example, if I created a nice 3rd person camera script that I like to use in more than one project, instead of cut and paste it every time (or worse, retyping it) I can just save it in its own wdl file and INCLUDE it to any new project I may do.

To include a file its simple:

Include<filename.extension>;

The < > tells the engine compiler that what is inside the < > is the name of a file. Like <cbabe.mdl> (though you cannot include a model)

How include works is it inserts the content of that file into the .wdl that uses the include instruction RIGHT at the location of the include line.

So, for example the include<events.wdl>; Everything in this file will be inserted between the:

path"C:\\Program Files\\Gstudio6\\FPS\\levels\\TechnoLabs";

// contents of events.wdl will be inserted here

include <doors.wdl>;

This is very important to remember because of our c-script syntax rule: a variable, string, array function … must be defined BEFORE it can be used.

Let’s give an example:

Let’s say I defined a function in events.wdl but it uses a variable I defined in player.wdl. Following our syntax rule I would get an “ undefined” error when I try to run the game. Because player.wdl is included AFTER events.wdl so my variable definition isn’t until after that function.

Notice I have doors.wdl included after the events.wdl. The doors.wdl has door, elevator and level change actions that use the event functions in events.wdl. If we had these 2 included in reverse order we would get several ‘undefined errors’

Note also my includes are AFTER my path statements, especially this one:

path"C:\\Program Files\\Gstudio6\\FPS\\scripts";

I could now, technically take my events.wdl, doors.wdl, and player.wdl and move them over to my scripts folder. The game.wdl HAS to be in the folder of your starting level. If I moved the other 3, then ran my game, I would get 3 error messages from the engine before the game starts stating ‘cannot find ‘xxx.wdl’ file’ BUT the game will still run, because the script will find those files because of the path lines. This is VERY helpful with a larger project that will take MANY scripts and levels before you finally do a final build and publishing. For now, keep all the .wdls where you are working, but copy them to the scripts folder as you make changes.

NOTE: For a published game you are limited to 40 INLUDES, but that’s an allot to use up. With pro edition you can create resource files (compressed complied files of models, scripts, sprites etc) and those you are unlimited in including.

Of the 4 wdl files we are going to go and clean up the player.wdl for now. It has allot of global variables we can convert to skills. Plus its using allot of skills we can set defines to as well as we can change several numbers over to skills to allow us to modify aspects of the entity by the behaviors panel.

Here is a list of variables we need to integrate into our player skills and skills we are already using:

var move_vec[3] = 0,0,0;

var idle_percent = 0;

var walk_percent = 0;

var run_percent = 0;

var land_percent = 60;

var jump_percent = 0;

var temptilt = 0;

DEFINE falling,skill30; // 0 for not falling 1 for falling

DEFINE fall_distance,skill31; // distance to fall

DEFINE jumping,skill32; // 0 not jumping, 1 jumping, 2 run jumping

DEFINE jump_hight,skill33;

We also need to add these (changing solid set numbers to variable numbers that we can adjust)

Max walk jump height

Max run jump height

Walk speed

Run speed

Strafe speed

Walk animation speed

Run animation speed

And ones we need to also add for this part of the tutorial:

Health

Max health

Armor

Max armor

Battery

Max battery

Ammo

Max ammo

Keys

Seems like allot, but it will be easier then you think.

First we pick out ones we want to have in the first 20 skills so we can manual set values under the entities properties.

1 Health, max health, armor, max armor, ammo, max ammo, battery, max battery

2 Walk speed, walk animation speed, run speed, run animation speed, strafe speed

3 Max walk jump height, max run jump height

The rest we can set after skill 20 so they are not modifiable

For group 1 we aren’t using any such data yet but we need to decide how they work and max limits:

Health_max will be 200 units. Normal is 100 units 0 is death for the player. Health kits can only heal up to the 100 limit. Health boosters can push health up to the extra 200 max.

Armor max is 200 units. When entity is hit, damage is removed from the armor first before health except for the case of explosive weapons (rockets/grenades) which armor absorbs half the damage if does 50 damage. If player is wearing armor the armor takes 25 damage, the player health 25. No armor, player takes 50 damage. If remaining armor is less than the half, left over damage from damage done to armor is applied to player. I.e. grenade does 50 damage, player has only 15 armor left. After hit with grenade player has no armor left and lost 35 health.

Ammo max 200 units. Will be used by all weapons (for more complex game we will want an ammo count for each type of weapon, like grenades, mines, bullets, rockets etc)

Max battery is 100 units. The battery powers the players flashlight (when picked up) and ticks down while the flashlight is on.

DEFINE BATTERY,skill13;

//current battery units

DEFINE ARMOR,skill14;

//current armor units

DEFINE HEALTH,skill15;

//current health units

DEFINE AMMO,skill16;

//current ammo units

DEFINE BATTERY_MAX,skill17;

// max battery units

DEFINE ARMOR_MAX,skill18;

// max armor units

DEFINE HEALTH_MAX,skill19;

// max health units

DEFINE AMMO_MAX,skill20;

// max ammo units
DON’T forget to update the player_move //uses: line as we add these defines

[image: image8.png]
So in the above picture we set our player to start at:

0 current battery units 100 max

0 armor units 200 max

50 current health units 200 max

0 ammo units 200 max

Keys is a value we only need to keep track of as the player picks them up so we will use skill21

To keep track of keys picked up.

DEFINE Keys,skill21;
//keeps track of what keys have been picked up

Now, lets do our variables: none of which we want to modify in properties. Lets start with the animation variables and set them in skill40 – skill44 (which then as we add the other animations of our model can continue on from here)

DEFINE idle_percent,skill40;
// animation frame cycle % values

DEFINE walk_percent,skill41;

DEFINE run_percent,skill42;

DEFINE land_percent,skill43;

DEFINE jump_percent,skill44;

Then we insert into our player_move action before our while loop our starting values we had used in the variable defines before so we can set their starting values.

action player_move

{

player = me;

wait(1);

my.falling = 0;

my.jumping = 0;

my.jump_hight = 0;

my.idle_percent = 0;

my.walk_percent = 0;

my.run_percent = 0;

my.land_percent = 60;

my.jump_percent = 0;

camera.genius = player;

shift_sense = 2;

Now, we need to go through every line that used these variables and set the my. before them.

An easy way to be sure you find them all is use SEDs FIND/REPLACE tool.

Start with idle_percent, select edit – >replace from the menu. In the pop up box, enter to find idle_percent, replace with my.idle_percent.

[image: image9.png]
Now just click Find Next. Watch what it finds and be sure you’re not replacing the defines and what is in the //uses: line. Find ones you want to replace hit the replace button.

Repeat for walk, run, land and jump percents.

Save and run. Always when doing such changes to save often between each change, so you can catch any mistakes or typos.

Temptilt we will move to skill50;

DEFINE temptilt,skill50;

// keeps track of camera tilt

…

// uses: ………. , temptilt

…

my.jump_percent = 0;

my.temptilt = 0;

camera.genius = player;

…

Vec_set (camera.x,player.x);

camera.z += 27;

camera.pan = player.pan;

my.temptilt += (key_pgup - key_pgdn)*4*time;

If (key_home) { my.temptilt = 0; }

if (my.temptilt > 75)

{

 my.temptilt = 75;

}

else

{

 if (my.temptilt < -75)

 {

 my.temptilt = -75;

 }

}

camera.tilt = 0 + my.temptilt;
Now for our speeds:

Max walk jump height

Max run jump height

Walk speed

Run speed

Strafe speed

Walk animation speed

Run animation speed

Walk speed walk, animation speed - skill1

Run speed, run animation speed – skill2

Strafe speed (we have no animation for strafe) –skill3

Walk jump, run jump maximums –skill10

I left some room between strafe speed and jump maximums for adding later our other movements/animations: crawl, swim, and if we wanted to alter jump/fall death speeds.

I’ll do walk first so you can see how to set up the rest.

DEFINE Walk_Anm_Speed,skill1;
//walk speed . animation walk speed
So our walking speed will be the integer part of skill1 and our animation speed will be the decimal fraction ‘.’ part of skill1

I know currently my walk speed rate is 4* time

And walking animation speed is 5*time.

[image: image10.png]
So I enter it in the properties under Walk_anm_speed as 4.5.

WARNING. The 3DGS engine uses a rounding system for its variable mathematics. The thousandths digit ‘.001’ is unstable for detailed mathematics precision because of this rounding. It’s best to not rely on this digit being accurate or better yet, just not use it. This isn’t a bug, it’s a matter of give and take on detailed precision. Remember a 1.0 speed would = 1 quant or 1 pixel. So .001 would be one one thousandth of a quant +/- one one thousandth of a quant due to rounding. Would be the same as take one pixel of our screen and divide it into 1000 parts. For a 3D game engine that is very GOOD precision without overburdening the math calculations. For animation and speed the +/- .001 isn’t critical, where it could be in tracking other data like max health for example.

Now, that we got our skills set up we need to edit our lines for walking speed and walking animation speeds.

For walking speed we have it in these lines.

// if not jumping or falling we can move

if (!my.falling && my.jumping ==0) // if falling = 0 then !falling is = 1, or true that I’m not falling
{

move_vec.x = (key_force.y)*4 *time;

move_vec.y = (key_comma - key_period) *3 *time;

}

if we change it to:

move_vec.x = (key_force.y)*my.walk_anm_speed*time;

It would be incorrect because we only want to read the integer part (the 4) of our skill. To do that we use the engines int() instruction. Which returns just the integer value of a variable

move_vec.x = (key_force.y)*int(my.walk_anm_speed)*time;

for the walking animation the animation speed is in this line:

else // shift key is NOT being pressed so we are walking

{

my.walk_percent = (my.walk_percent + sign(move_vec[0])*5*time)%100;

NOTE: while we have been doing our code work we have inserted all these // comment lines. Makes it a bit easier finding things now and comment lines don’t take up any memory they are ignored when the level is compiled. So comment away as much as needed so you know what’s going on.

Here we want the fractional part of our skill. The engine as we seen has an integer instruction, so too, does it have a fractional instruction. frc() which it returns just the decimal part of a variable.

A frc(my.walk_anm_speed) would = .5 but we need it to be 5.0 not .5. we just take that times 10 then

(frc(my.walk_anm_speed)*10) and plug this in where our 5 is

my.walk_percent = (my.walk_percent + sign(move_vec[0])*(frc(my.walk_anm_speed)*10)*time)%100;

Save and test it. (be sure to build/update entities after entering the data into the player entity properties panel)

Now, you could use this back in our testing level and tweak the walk speed and walk animation speed by just altering the skill1 behavior slot. If you switched models from cbabe to another you will most defiantly probably need different speeds, but now it’s easier than finding all the lines in the player_move script and altering them.

Repeat the same steps as above, for the run and strafe.

DEFINE Walk_Anm_Speed,skill1;

//walk speed . animation walk speed

DEFINE Run_Anm_Speed,skill2;

// int * walkspeed =run speed
. animation run speed
DEFINE Strafe_Anm_Speed,skill3;

//strafe speed . animation strafe speed

shift_sense = int(my.run_anm_speed);

if (key_shift) // either shift key is being pressed run animation
{

 my.run_percent = (my.run_percent + sign(move_vec[0])* (frc(my.run_anm_speed)*10)*time)%100;
move_vec.y = (key_comma - key_period)*int(my.strafe_anm_speed)*time; // strafing
[image: image11.png]
Notice our RUN speed is our shift_sense, so total run speed would actually be: walk_speed * shift_sense

Now for our Jumping hights. Lets use the same method of one skill where integer is walking.standing jump height and fraction is running.

DEFINE Jump_Walk_Run,skill10;

// walk/stand jump height . run jump height

// check if jumping

if (my.jumping !=0)

{

 if ((my.jump_hight > int(my.Jump_Walk_Run) && my.jumping == 1) || (my.jumping == 2 && my.jump_hight > (frc(my.Jump_Walk_Run)*100)))

[image: image12.png]
Save, build/updating entities. Run.

If you followed along everything should still be working as it was before any changes to our scripts.

Now for our last piece, our move_vec. For this we are going to use our last 3 entity skills 98, 99, and 100.

NOTE: if you are using A5, you only have 48 entity skills so you will need to define them to different skills.

DEFINE move_vec_x,skill98; // movement vector uses skills 98 99 and 100

DEFINE move_vec_y,skill99;

DEFINE move_vec_z,skill100;

Now I go through and replace all the move_vec.x .y and .z lines with the appropriate defined skill.

I also notice I have a couple left over move_vec[0] and move_vec[1] lines in my animations so I change those.

Finally in my ent_move line I have just (move_vec,NULLVECTOR) which I change to my.move_vec_x because the engine knows to read the 2 following skills consecutively after the first in any vector.

Now, my player.wdl is set up where it uses only ONE globally defined item, the engine defined PLAYER pointer. Otherwise I can use this wdl now in any project I want to because it has no global definitions that might conflict with other work I might already have done.

One last step before we get into new stuff.

Modularizing our player action.

In this we are going to look at what parts of our player script we can chop out of it and put into separate functions. One to slim down our action size and Two, to make parts of the player action more generic and reusable for OTHER things besides jut the player. Starting from the top of my action I look at each section of the script:

// check if jumping

if (my.jumping !=0)

{

if ((my.jump_hight > int(my.Jump_Walk_Run) && my.jumping == 1) || (my.jumping == 2 && my.jump_hight > (frc(my.Jump_Walk_Run)*100)))

{

my.jumping = 0;

my.move_vec_z = 0;

my.jump_hight = 0;

my.jump_percent = 0;

}

else

{

if (my.move_vec_z > 1*time)

{

my.move_vec_z -= .5*time;

my.jump_hight += my.move_vec_z;

}

else

{

my.move_vec_z = 1*time;

my.jump_hight += my.move_vec_z;

}

}

}

everything I notice here that is in red is handling my jumping so I copy all the red and paste it into a new function I make before the player_move action. Then I place a call to that function back into the if(my.jumping!=0) check.

function jump_handling()

{

if ((my.jump_hight > int(my.Jump_Walk_Run) && my.jumping == 1) || (my.jumping == 2 && my.jump_hight > (frc(my.Jump_Walk_Run)*100)))

{

my.jumping = 0;

my.move_vec_z = 0;

my.jump_hight = 0;

my.jump_percent = 0;

}

else

{

if (my.move_vec_z > 1*time)

{

my.move_vec_z -= .5*time;

my.jump_hight += my.move_vec_z;

}

else

{

my.move_vec_z = 1*time;

my.jump_hight += my.move_vec_z;

}

}

}

action player_action

{

// check if jumping

if (my.jumping !=0)

{

jump_handling();

 }

It’s the SAME script, I just moved one entire handling (our jumping) and placed it in its own function then called it where I removed it from. I put NO wait(1) lines of whiles or anything. With a function called by an action. The MY pointer in the function will have the same value as the MY has in the action that called the function. What if I had 3 entities all calling this function which my does it get? Go back to our lesson on INSTANCE

Entity 1 my

entity 2 my

entity 3 my

|

|

|

 jump_handling

 jump_handling

 jump_handling

Each entity when it calls the jump handling function creates its OWN instance (or copy) of the function so the MY carries over to the instance the entity called. In the case of this function, it has no wait or loop. So entity1 would call the function, create and instance of this function, the function would execute and reach the end of its instructions and then remove itself from existence. A function does NOTHING until something calls it and an instance is created of that function to actually execute its instructions.

Think of it like a Fire and Forget missile. You shoot it (function call to pull a missile out of its ammo slot) it does its job then is gone.

IF we had a while loop in our function, it would Keep right on running until the conditional in the while statement fails.

i.e. a self guided missile. It keeps following a target until it runs out of fuel

By pulling our jumping handling out of our player action it’s now a GENERIC sort of jump handling because it does not rely on any GLOBAL data, only data and skills associated to the ‘my’ entity. My player can use it, and my badguys can use it. Why right 2 jump scripts, one for player and one for badguys when 1 generic one will do the job? Our jump_handling function doesn’t check for ANY key presses or player input, it just checks some my.entity skills used for flags and adjusts other my.entity skills and movement vector. Now if I find my jump doesn’t work as well as I want it, I just edit the function and it will fix jumping for all that use it.

There IS a method to my madness after all! (
I do the same with the falling handling right after the jumping.

function fall_handling()

{

If (my.fall_distance >64 && sign(my.fall_distance) != -1 && my.jumping ==0)

{

my.falling = 1; // now I'm falling

if (my.move_vec_z > -15*time)

{

my.move_vec_z -= .5*time;

}

}

else

{

if (my.fall_distance < 64 && my.falling == 0 && my.jumping ==0) // keep us on the floor normally

{

my.move_vec_z = -my.fall_distance*time;

}

}

}

// check if jumping

if (my.jumping !=0)

{

jump_handling();

 }

// check if falling

fall_handling();

Already our action script is much smaller and easy to read. Keep in mind to watch for any input instructions or references to specific things like PLAYER pointer when making the script more modular.

I move down to my animations parts. And move jump, fall, stand, walk and run to their own functions.

And I note I had the player pointer in my walk and run animations so I change those to ‘me’

function stand_animate()

{

my.idle_percent = (my.idle_percent +5*time)%100;

ent_animate(me,"idle",my.idle_percent,ANM_CYCLE);

}

function walk_animate()

{

my.walk_percent = (my.walk_percent + sign(my.move_vec_x)*(frc(my.walk_anm_speed)*10)*time)%100;

ent_animate(me,"walk",my.walk_percent,ANM_CYCLE);

}

function run_animate()

{

my.run_percent = (my.run_percent + sign(my.move_vec_x)*(frc(my.run_anm_speed)*10)*time)%100;

ent_animate(me,"run",my.run_percent,ANM_CYCLE);

}

// animate jump

if (my.jumping !=0)

{

jump_animate();

}

else //other animations

{

if (my.falling == 1) // animate falling

{

fall_animate();

}

else // animate stand walk and run

{

If (my.move_vec_x == 0 && my.move_vec_y == 0) // stand

{

stand_animate();

}

else
// our movement animations will go here

{

if (key_shift) // either shift key is being pressed run animation

{

run_animate();

}

else // shift key is NOT being pressed so we are walking

{

walk_animate();

}

}

}

}

 Now we finish this (for now) by moving our camera as well. Wait a sec! You said NOT to put the camera in a function! Yes I did. As you seen in our modularizing of our player action, we changed nothing in our code, not even the order things are executed. A normal mistake done by many people is to place their camera update into a separate function (and even worse a STARTER function, which is a special function that starts AS soon as the game starts up (thus the name starter) and then they place that camera update inside a while loop inside that function.

Every function, action, loop, event handling is placed in a list in the engine called an iteration loop list. This list is all the things the engine has to perform each frame IN the order of that list from top to bottom (i.e. if your game is running at 50 frames a second, the engine is rolling through that loop at 50 times a second). The TIME factor we use to even out our movement and animations is calculated as an average of how fast its going through that loop per second over a longer set time duration (i.e. average of how many frames a second for a minute duration just as an example.)

The engine already has its OWN internal list of things it must perform like redrawing the screen (rendering), handling collisions, entity movement and so on. Our scripted actions, functions, loops all get put into that list IN the order that each first start to execute. IF our camera update is placed in that list BEFORE our player_entity, the camera is updated to the player information from the PREVIOUS frame while the player is now moving in THIS frame. This can cause inaccurate display update (i.e. a badguy isn’t where it looks like it should be, why I cannot click my mouse pointer on some badguy but if I go to its left or right I can. Player entity seems to be jerky in its movement (which actually it’s the camera trying to keep up so the camera jerks ‘forwards’)

Let’s see 2 examples

First the camera is updated after entity moves:

[image: image13.png]
Now the camera updates before the player moves.

[image: image14.png]
As you should see, the camera will always be behind if it updates BEFORE the entity moves because your screen is rendered every frame based on the camera view location and angles.

Going back to our script, our camera updates are done when WE want it to, right after the player moves and does its animation adjustments for that frame. We can place our camera update in a function (without a loop or wait) as long as we make our call to that function after our movement/animations. We save our test level camera instructions too, as we will be using them later in this tutorial besides just for testing.

function update_camera()

{

// camera updates

//vec_set(temp,my.x);

//vec_sub(temp,camera.x);

//vec_to_angle(camera.pan,temp); // now MY looks at YOU

Vec_set (camera.x,my.x);

camera.z += 27;

camera.pan = my.pan;

my.temptilt += (key_pgup - key_pgdn)*4*time;

If (key_home) { my.temptilt = 0; }

if (my.temptilt > 75)

{

 my.temptilt = 75;

}

else

{

 if (my.temptilt < -75)

 {

 my.temptilt = -75;

 }

}

camera.tilt = 0 + my.temptilt;

}

action player_move

{

…

// entity moves

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH + ACTIVATE_TRIGGER + GLIDE;

ent_move(my.move_vec_x,NULLVECTOR);

update_camera();

wait(1);

}

}

NOTE: on TIME, a minimum of 16 frames a second is needed to simulate animated movement, the human eye can perceive ‘flickers’ between frames at a slower rate. We use TIME allot but how does it work.

The 3DGS engine if it runs at 16 frames a second, the TIME factor has a value of 1, as the frame rate increases the time factor decreases.. 32 FPS TIME is aprox .5. Sudden ‘jerks’ in the frame rate can translate to ‘jerkiness’ of the game play. This can be compensated with the engines time_smooth variable as well as forcing a minimum and maximum frame rate (with fps_min, fps_max variables). I do NOT recommend setting FPS_MIN to over 16.

Example:

My entity moves at a speed of 8. Move_vec.x = 8*time you can calculate it by doing

(Speed * TIME*FPS)/16 FPS a second

If my frame rate was at 16 FPS my TIME would = 1.

(8*1*16)/16 = 8 quants moved in a second of game play

If my frame rate was at 32 FPS my TIME would = .5

(8*.5*32)/16 = 8 quants moved in a second of game play

If I didn’t factor in TIME

If my frame rate was at 16 FPS

(8*16)/16 = 8 quants moved in a second of game play

If my frame rate was at 32 FPS

(8*32)/16 = 16 quants moved in a second of game play

This is how applying the TIME factor can keep the game smoother on different machines that run at different frame rates.

Ok, for now we are done shifting things around in our scripts. As we create new things we will fit them into this structured system as well when we need to do modifications and fixes we will make it more flexible not more cumbersome. If anything, I hope you came away from this part, how we can take and organize our script work, even from something totally unorganized before and make it a part of something bigger without needing to fight with making it fit. As well as how we can use some of our code as modular pieces so more than one thing can use it vs. retyping it many times. Note: you should be thinking ahead of time we are going to do the same to our doors/elevator actions later on considering how much alike they are.

On to the new (and cool stuff)

Pick-Ups:

No, I don’t mean like a pick-up truck. Pick-Ups are items the player in a FPS runs into to pick them up, like guns, ammo, health packs etc… In a 3rd person view game the common way to handle a pick-up is by clicking the mouse pointer on it. In a 1st person view game though its usually handled by just running into it. In other words what really separates these 2 versions is just the event handling. Mouse click on an entity or an entity impact.

We will only deal with impact pick-ups in this tutorial but the other is virtually identical except what triggers the event.

We know we are going to have to have entities to impact with and those entities need an action so they can be impacted.

Function pick_up_event()

{

if(EVENT_TYPE == event_impact)

{

}

}

Action pick_up

{

my.enable_impact = on;

my.event = pick_up_event;

}

Simple huh? We place these 2 in our events.wdl. They don’t do anything yet other then detect if an entity is impacted by it and then calls a function that checks if it was impacted. So lets make a simple pick up out of this. A health pack. We set our starting health at 50 in our behaviors panel, we remember that a health kit will only heal us up to 100 health. We need a health booster to go over 100. First we grab a model that we want for our health pack, place it in our level and give it the pick_up action.

[image: image15.png]
Save build/update entities run.

You should walk up to it, and you stop moving when trying to push against it, otherwise nothing happens.

[image: image16.png]
We need it to do something, i.e. heal us if we are under 100 health. If it heals us then we want it removed from the game since we used it. From the event_impact we know if the entity is impacted, the global engine pointer YOU is set to the entity that ran into it. YOU value is only being valid until the next wait or sleep instruction we need to right away see if YOU entity’s health is under 100.

If (int(YOU.health_max) < 100) // remember we want the current health which is the integer part of health_max

If it is, what do we want to do? Heal the entity (making sure not to go over 100) and then remove the pack because it was used. We also need to know how much this health pack heals for, lets say it does 75 units of healing

{

if (int(YOU.health) + 75 > 100) // if YOU remaining normal health is greater than how much I heal

{

YOU.health = 100; //then you are fully healed

}

else // if YOU health is so low I won’t fully heal you

{

YOU.health += 75;

}

 ent_remove(me); //I healed you, so now I am to be removed from the game

}

Run it and get errors? Did you remember to set up your //uses: defines for the health_max?

events.wdl is included BEFORE the player .wdl so health_max isn’t defined as far as our function is concerned. I just copied the one from player.wdl to events.

Now save the scripts. Run. You should be able to walk over the health pack, move away and see its gone.

But how do we know it healed us?

Well, we need a way to display our health (and other information). As I mentioned at the start I’m not going to cover how to work with panels, but we need one from here to the end of our game. This is going to be a very simple panel just to display information we need: battery, armor, health and ammo.

Simple Panel:

A panel, is nothing more than a 2D image overlaying our 3D view. Take a piece of cardboard, cut a hole in it so its like a picture frame. Now walk around your home. The cardboard frame is a panel. It’s not in the game world, just in your camera view.

Create a new image in your paint program (I’ll use MS Paint for this) and make it 800x600 in size (the same size as our screen resolution our game is set at). I paint bucket fill the entire image with pure 0/0/0 RGB black color. The bottom 40 pixels high I fill it with a light blue color, I use the letter tool to ad in text do write in the words Battery Armor Health Ammo in that order across my blue area so I know what information displayed is what..(don’t use black) then put in some dark boxes under each word for area to display our data. Then saved it named panel.bmp in my FPS\images folder

[image: image17.png]
Now we need to get this panel image into our game.

First we need to load the file into memory. We can assign files into a variable in 3DGS for images we use the bmap instruction to load a .bmp .pcx or .tga

bmap the_panel = <panel.bmp>;

Now we need to define a panel to the engine. For this we use the

Panel name { } instruction. Notice it looks like a function or action. You will find most structures are like this in c scripting, c and c++ computer languages.

Inside our panel, like an entity, it has parameters and flags. For a panel, the first thing we need to tell it what image it is using. The size for the panel is based on the image size. We use the parameter ‘bmap’ to set our panels image.

Panel game_panel

{

bmap = the_panel; // here we use the NAME of our string…that we defined just before

}

Now we need to make it visible in the camera view. For that it is a flag called: visible

Panel game_panel

{

bmap = panel; // here we use the NAME of our string…that we defined just before

flags = visible;

}

I save this all into a NEW wdl I call panels.wdl, then make sure I include<panels.wdl>; in my game.wdl (placed it after the player.wdl include line.)

When I run it I get a black screen with our blue bar along the bottom. We need to be able to see through the black area. To do this we need to turn on another flag for our panel. Called OVERLAY.

Hit tab and type in: game_panel.overlay = ON;

Now the black area disappears and we can see again, but our bar is still visible. So in our script we need to also set our overlay flag.

flags = visible, overlay;

[image: image18.png]
We need to get our information on the panel now. For this we will use the panel attribute called DIGITS.

DIGITS = x, y, len, font, factor, var;

X and Y set the screen position where the digits upper left hand corner will start

Len is the length of our digits here we need 3 digits so len is 3

Font is a text font, we can use either a font image or a true type font.

Factor is a multiplier for our variable i.e. factor*variable

Var is the variable to be displayed

First we need to load in a font to our game. I copy the digifont.bmp image out of gamestudio template folder into my FPS\images folder. We use the special image instruction called FONT to now load it

.font name = <filename>, width, height;

So I load my font like this in my panels.wdl:

font digit_font= <digifont.bmp>,12,16; // named the font digi_font

I get my X and Y by looking at a the upper left location where I want my digits to start for health

Then plug in the remaining info I need for my digits.

digits = 472,579,3,digit_font,1,player.health; // I use player pointer because the player entity doesn’t call the panel so my would never work.

Now my starting health is displayed

[image: image19.png]
[image: image20.png]
I go over and walk over my health pack and my health goes up to 100 and the pack disappears. (as it should)

Add digit lines to the panel for the battery, armor and ammo as well. You will have to tweak the X and Y locations till you get them about right. I usually adjust the Y first, then all of them can use the same Y then its just tweaking the X distance across the screen.

Our display panel is up and working. Sorry that this was very fast, but panels can be dealt with in a tutorial all by themselves and we don’t want to spend too much time making panels for this tutorial.

[image: image21.png]
More pick-Ups:

We know we got a health pick-up, and should be easy to figure out we also got battery, armor and ammo pick ups as well. Instead of making a pick-up action for each. Lets modify our one pickup for ALL pickups.

Let’s use a skill to set what sort of pick-up it is. Skill1.

1 it is batteries

2 armor

3. health

4 ammo

5. health booster

6. weapon

7. key

DEFINE Pickup_type,skill1;

We also carry over the other 3 defines from our player right away for battery, armor and ammo. We also want 2 more skills. One for if it is 1,2,3,4 how many units in that pick up, and another if it is a weapon (the weapon number) and the keys. We also need out health booster. Carry over all needed define from the player as well.

DEFINE PickUp_Type,skill1;

// 1=battery, 2=armor, 3=health, 4=ammo, 5=weapon

DEFINE UNITS,skill2;

// number of units this pickup has

DEFINE Weapon_Number,skill3;

// which type of weapon this is

DEFINE BATTERY,skill13;

//current battery units

DEFINE ARMOR,skill14;

//current armor units

DEFINE HEALTH,skill15;

//current health units
DEFINE AMMO,skill16;

//current ammo units

DEFINE BATTERY_MAX,skill17;
// max battery units

DEFINE ARMOR_MAX,skill18;

// max armor units

DEFINE HEALTH_MAX,skill19;

// max health units
DEFINE AMMO_MAX,skill20;

// max ammo units

DEFINE Keys,skill21;

//keeps track of what keys have been picked up

We modify our event for health pick-up to see if it IS a health pick-up and if so instead of our 75 health units we use my.units for the amount of healing.. We also learn a new instruction MIN(var,var)

if (my.pickup_type == 3) // health pickup
{

If (int(YOU.health < 100))

{

YOU.health = min(YOU.health+my.units,100);

ent_remove(me); //I healed you, so now I am to be removed from the game

}

}

MIN(var,var) returns the value of the lowest of the 2 numeric values. It would be the same as if we wrote:

If (YOU.health + my.units < 100)

{

YOU.health = YOU.health+my.units;

}

else

{

YOU.health = 100;

}

Sure saved some typing there using min (
Now we can add in checks for pick-up types 1,2,4,5,6,7 like we did for 3. For battery, armor and ammo we can apply the same script from health pack and modify it to fit our parameters of how each work and use the appropriate variable to adjust. Example for battery I adjusted health script to look like this: because we have no 100 middle max like in health packs I use the fractional instead for my max units.

if (my.pickup_type == 1) // battery pickup
{

if (YOU.battery < YOU.battery_max)

{

YOU.battery = min(YOU.battery+my.units, YOU.battery_max);

Remove(me);

}

}

Be SURE you are putting these checks in our format:

if (my.pickup_type == 1)

else

if (my.pickup_type == 2)

else

if (my.pickup_type == 3)

Because if we did this

if (my.pickup_type == 1)

if (my.pickup_type == 2)

if (my.pickup_type == 3)

and now set our health pack model to be type 1, we ran over to it and impacted with it we will get this message:

[image: image22.png]
Why? Because we move up to the entity and impact with it, it checks to see if it is a battery pick-up and that the entity impacting with it has less than maximum battery units. If so it then applies battery units to the YOU entity and removes the ME entity pick-up from the game.

BUT the function hasn’t terminated yet from running. The entity is gone but this function instance is still in memory and running until it terminates itself. It then moves down to the next IF check. Looks to see if my.pickup_type == 2 but the MY entity no longer exists in our level, because we removed it from the game already. By removing the entity we set this functions MY pointer to NULL. Our entity’s action CALLED this function, so the my of the health pack entity carried over to this instance of the function. By removing the health pack our MY no longer has anything to point at.

Remember in our level change script how when the player impacted with the ‘zoneblock’ the event function it called we had to set the my pointer to NULL before we could load a new level? IF we didn’t the engine would have been held up at level_load because that instruction is like a global remove(me).

We can set up armor, ammo, and health booster the same way. I then place copies of the pick-up model we are using, enough for 1 for each pick up we just wrote up, gave them all a unit amount well over 200 for testing except for health pack I make that under 200.

Now we are cooking (. Now we have some different pick-ups and even set how many units that pick up recovers for our player. Like for health I could use models of a chunk of meat for a little bit of health, a Band-Aid box for a bit more, 1st aid kit for like 50 then mabey some sort of stimulant injector model for health boosters. The model used don’t matter it’s the action we assign to it and what data we plug into it to say what sort of pickup it is.

Let’s skip the keys for now and get into weapons. YAY!

Typically in a FPS a player has to pick up weapons before they can use them and they can select between the different weapons by either using the number row above the QWERTY keys or the mouse wheel. First we need a way to store our information if we have a particular weapon (0-9) An easy way is to use an array

Var weapons[10]; // 0-9 weapon flags 0= no weapon 1 got that weapon

We make this a global array because we are only dealing with the player to keep this information and I am then going to place this in a new wdl called weapons and make sure to place my include line in my game.wdl for it (at the end of my includes list)

Lets work with out first weapon (weapons[0]) to start so we an build a basic frame work of pick up, player selection, displaying, aiming, shooting, ammo use, reload and animations.

I wanted a semi sci fi looking pistol that shoots bullets for weapon 0 which I did find one but one big problem. It’s not animated. So we get to do a touch of model work here.

The gun I use here is the seburocx.mdl from the weapon pack by Kai Kieschnick on the Acknex Unlimited site.

[image: image23.png]
First we need to align the model to the MED origin point (in the picture above it’s the

Point where the 3 lines converge in the yellow circle). Making sure its aligned to all 3 axis and that the direction the gun faces is towards the + positive X axis (just like our cbabe.mdl faces the + X axis in MED)

[image: image24.png]
I now want to animate it to shoot. Lets think of the sequence.

Pull trigger

Hammer falls

Cartridge primer is detonated igniting power in the cartridge

Bullet is ejected from the cartridge by the expanding gasses caused by the ignited powder.

This causes the expended cartridge to be forced backwards from the breach as the bullet moves forwards into the barrel .

The ‘slide’ of the gun slides back from the force of the cartridge pushes itself backwards, holding the trigger from releasing the hammer again.

This backwards movement of the slide recocking the hammer back and re tightening the tension on the spring that holds the ‘slide in the forward position (this is called recoil).

A catch on the slide that holds the cartridge releases and ejects the expended cartridge from the gun.

The slide then under tension of the coiled spring forces the slide forward again, catching the next fresh cartridge off the top of the magazine clip slides it out of the magazine and pushes it into the breach and releasing the hold on trigger.

Allot of steps for something that happens in a fraction of a second BUT by laying out the steps in order lets us address what tasks need to be done in what order for our game.

So out shooting animation needs the slide to be forward, then moving back then forward again. The model doesn’t have a trigger or hammer so no worries there.

This model only has one frame so I add a new frame. Edit->add new frame then use insert frame after final frame, use current frame and name the new frame ‘shoot’

[image: image25.png][image: image26.png]
I now click on the animate button and using the frame scrolling button I move to the shoot frame I just made.

[image: image27.png]
From the Shoot 0 frame I add another new frame just as I did before, then I make sure I have that new frame selected Shoot1.

I then select ‘face mode’, ‘move’, ‘restrict to left/right’. I select one polygon face of the ‘slide’ part of my gun. (I am fortunate that this model was built in pieces, and not as one solid mesh, otherwise I would have to separate the slide faces from the rest of my model). With the one face selected I select the ‘select connected’ tool to grab all faces connected to that face. Then I move my guns ‘slide’ back to where I think it would go as if the gun was fired.

[image: image28.png]
I then scroll back to my Shoot0 animation frame and add a new frame just as before. This will give us a 3 frame shooting animation. You can click the ‘play’ animation button (far lower left corner button) to watch the gun shoot. Save it now.

Now we need to have a way to get it on our screen. A FPS usually ‘imbeds’ the weapons they display into the 2D view screen instead of placing them in the 3D world. We will do the same. For 3DGS this is called a View Entity. It does NOT exist in the 3D world, its only visible in the 2D camera view area so we have to apply it to our camera view, not place it in the level in WED.

We use a definition structure called entity

Entity name { }

Looks like a panel right? Well, it sort of is but instead of a 2D image it’s a 3D model, or we can use a 2D image as well like a sprite. Like our panel, we need to load the model entity (or sprite) into the entity definition. Unlike a panel we have to load the entity in the definition itself instead.
Entity gun0

{

type = <seburocx.mdl>;

}

Like for a panel definition the bmap parameter IN panel stated what the image was. For an entity, ‘type’ tells the engine what type of entity is being loaded, in this case the seberocx.mdl model.

Just like our panel, a view entity has flags. Like visible to make it visible or not, overlay, transparent and so on. So we need to make our gun visible.

Entity gun0

{

type = <seburocx.mdl>;

flags = visible;

}

With a view entity we also need to tell the engine IN what view this entity is visible. We can have several views in a game besides the default engine one (called ‘camera’) (and we will in this one too.. hint hint), so we set this entities view parameter:

Entity gun0

{

type = <seburocx.mdl>;

view = camera; // this is visible in the view called ‘camera’

flags = visible;

}

Save and run. Hmm no errors but no gun either. Where is it? Lets see if I can explain a view entity positioning to you, this tend to really confuse some people. Its all about visualizing 3D space in a 2D display (the foundations of how a 3D game works visually).

Take a look at this image.

[image: image29.png]
The CENTER of our camera view is at the origin point looking towards the +X direction (which is the +X axis direction of our player entity too since our camera is aligned to the entity’s eyes). The Y and Z axis interact at the very CENTER of our screen. In this picture the Y axis is too low for our view, if we shifted the Y axis UP until it was even with the far end of the +X axis then that would be how our view would look. In our game the back end of the +X axis is the horizon line of our view. (just like you go outside and look to the horizon, the X axis plane is on that horizon line at your eye level)

A view entity location is placed based on this view grid lay out. Since we didn’t set an X/Y/Z it was at the default view origin, which would be like if we stuck the gun inside our eye.

Run the level again, hit TAB and type this in:

Gun0.x = 30;

[image: image30.png]
Our gun is now 30 quants forward of our camera view.

Type in:

Gun0.x = 35;

Gun0.y = -15;

[image: image31.png]
Play around with it some more with X Y and Z . You will notice any –X and it won’t be visible. That is because –X is behind the camera view, so not visible. You should also notice that as you move the gun left or right (Y axis) or up and down (Z axis) the front of our gun will always seem to point where the origin point lines up on the far horizon +X distance. This is perspective. The basis for creating 3D representation on a 2D surface (painting, drawing, architectural design, or even a computer game) .

Notice we also reference our gun as ‘gun0’ the name we gave the entity. This entity name works just like a pointer which is going to be very handy.

The gun looks nice , but something is missing. The hand holding it and the arm. Looks rather silly floating around in the air like that.

We could turn off our camera.genius in the player_move action and use our entities own hands, but cbabe only has 1 attack animation and that is only good for a handgun like weapon (her default gun). For other weapons we would have to build new animations for each weapon for cbabe. For 9 more weapons that’s a hand full. Instead, we are just going to create a model of her arm.

I open up cbabe in MED, scroll through her animations till I find a good frame (attack3 is good) where I can grab her arm from shoulder down (its ok to grab a few extra faces) then I the use the ‘invert selection’ tool.

[image: image32.png]
While keeping the inverted selection, toggle the Animate button off then delete the selection

I then look at what is left and select individual faces to remove as well to clean it up.

Then I goto Edit -> delete frames and select the range from the first frame to the attack2 frame to delete.

[image: image33.png]
And I repeat the frame deletions from attack4 to death6 frames. That leaves me with just one frame in the model attack3. I select the entire model, and realign it so its hand is lined up on the origin as if my gun was in its hand, then I save it as a new mdl called rightarm.mdl.

[image: image34.png]
Notice it’s still got its skin. Now, for the fun part (. I open up the skin viewer ‘View->skin’

And note where the arm parts are mapped by turning on the lines of the polygons. View->Lines->lines

[image: image35.png]
(saving a picture of it helps to use as reference later)

I reopen my gun mdl up then resave it as a new mdl called gun0.mdl. I select the entire gun, and using the move restrict tool to UP/DOWN movement I move the gun out of the way. Then goto File-> Merge

And from the pop up box I select my rightarm.mdl. The arm will now appear and be selected. Zoom in the windows and make sure it lines up on the gun visually as if the hand was holding it. I rotate the arm a little counter clockwise then bend the arm a bit back clockwise at the elbow joint. I see the gun looks a little large so I reselect that and scale it down a little bit then resave the model leaving both gun and arm separated for now.

I then copy both skins out of the gun and the arm models, copy the part of the cbabe model for my arm, open the gun skin and enlarge the skin to fit that clip and paste it in. Which I had to enlarge the skin by 100 pixels more in width. (I used MS paint for this as its great for it. other paint tools when enlarging an image size enlarges the entire thing, I enlarge the skin in Paint and just gives me more space without altering the image.)

[image: image36.png]
Now save it as a separate file. Reopen my gun0.mdl in MED then open its skin. I goto Edit ->Resize skin.

I edit the width to add in the 100 pixels I need for the new skin. Then MAKE SURE to uncheck the ‘adapt to skin’ check box.

[image: image37.png]
(by unchecking the adapt to skin points, you can enlarge the skin size without altering the skin or mess up the skin alignment on the model)

Go back up to edit and select ‘Add new skin’ and accept the default pop up box.

Click the next skin button [image: image38.png]
Then goto File->Import->BMP and select the new edited skin with then clipped it part from cbabes skin.

Now that the new skin is in place, page back up to the first skin. Goto Edit-> delete current skin and we should be left with now just the edited skin on the model. Save the model.

[image: image39.png]
Getting close now, hang in there (In skin view select View-> lines->lines and View->vertices-> ticks.

Keep this view opened up, adjust the size of MED and Skin view windows so you can see both, then open up the reference picture we made of the skin lines of the rightarm.mdl.

I select face mode in the skin view then select one of the triangles of the arm where I can see in my reference picture it should be. It will be highlighted in the MED editor window which face I select. When I got one, I then goto Edit-> select connecting to grab that entire face mapped group.

[image: image40.png]
Now with this group selected, I just drag it over to the clipped in skin part. Using my reference picture I try to get it lined up again. You will probably have to rescale the selection to make it fit. I repeat the process for all the arm parts, checking in the MED 3D view at times to make sure I didn’t mess a grouping up or missed a face.

[image: image41.png]
Now I just grab my gun model and move it back to the origin. Make sure it still lines up then save the gun0.mdl. In my weapons.wdl I change the mdl I load into ‘entity gun0’ I change that to this new model.

For reference of where the hand /gun would be in relationship to my cbabe player entity I open her back up in MED and measure aprox X/Y/Z distances from origin to shoulder for Y, eyes to hand height for Z and shoulder to hand length for X.

[image: image42.png]
I plug those values into my gun0 entity script and give it a try, ready to do some TAB adjustments to tweak it till it looks good to me.

entity gun0

{

type = <gun0.mdl>;

view = camera; // this is visible in the view called 'camera'

flags = visible;

x = 28;

y = -8;

z = -6;

}

[image: image43.png]
Not bad, think I’ll leave it just like that (
Lets start making it shoot. For that we need to decide, shoot with a key press? Or shoot with the left mouse button? Older FPS used a key, they soon learned however the mouse was better so we will use that.

We can read if the left mouse is pressed by the ‘mouse_left’ value, just like our key_ instructions.

We create a new function in our weapons.wdl.

function run_weapons()

{

wait(1);

while(player != NULL)

{

while(mouse_left)

{

wait(1);

}

wait(1);

}

}

Then in our player action we add a call to this function BEFORE the while loop:

action player_move

{

…

shift_sense = int(my.run_anm_speed);

run_weapons();

while (my.health > 0)

Now we make up an animation for our ‘shoot; frames of gun0 so we need a variable for the _percent here

var gun_percent = 0;

Then the animation: we need to make sure that it completes one FULL animation cycle before it will fire again.

while(mouse_left)

{

while (int(gun_percent) < 98) // it will never be 100 because of %

{

ent_animate(gun0,"shoot",gun_percent,ANM_CYCLE);

gun_percent = (gun_percent+10*time)%100;

wait(1);

}

gun_percent = 0; // resets the percent to 0 for the next shot

wait(1);

}

Looks good to me, but our gun should have a little recoil ‘kick to the animation and the slider should move back a bit more. Reopening the gun0.mdl I bring up the animation frame shoot1. I don’t want too much movement, but enough. I change the restrict preferences so my editing only effects this frame by unchecking the Use Frame range and set my mouse pointer is the center of rotation for the rotate tool.

[image: image44.png]
I then select the poly faces from the elbow to all of the hand and gun, then rotate the selection a small amount with my mouse pointer over the elbow joint area. Then set to move mode and restrict left/right I move it back –x 4 or so quants.

Save as a new mdl ‘gun01.mdl’ so I don’t mess up the old incase this doesn’t look right. In my script edit it to load this new file.

[image: image45.png]
Just enough I think. Don’t want too much else it would look more like a 80 year old little lady shooting a machinegun (
You know, I just realized (well, not really, I planned it ☻) we have no sounds. Not one. Lets start learning to put sound in our game with one of the more obvious game sounds, our gun. Sound files have to be loaded into memory just like bmap files. For that we use the sound instruction.

sound name = <filename>;

Not anything different then the specialized name of the file type we are loading. Notice sound, bmap, font they are all specialized defines instructions like var and string. They set up data to be used by a name.

Sound can load .wav files. So we need a gun shot like sound for our gun0.

I use a .wav file I have (from a sound FX site) that’s of a colt 45 pistol:

sound gun0_snd = <colt45.wav>;

Now we need to play the sound, for that we use the snd_play instruction. If you’ve worked with some sound before in 3DGS you may wonder why we aren’t using ent_playsound. Ent_playsound is for use in a 3D environment (such as our game levels) it doesn’t work for a 2D view entity.

snd_PLAY (sound, var volume, var balance);

sound is the name of the sound we loaded

volume is the volume of the sound 0 –100

balance is to give more right or left stereo speaker balance Left –100 - 0 - +100 Right

I set my sound to play at a 90 volume and place this instruction right before my loop to run the shoot animation so the gun will ‘bang’ before the slider slides back and forward.

while(mouse_left)

{

snd_play(gun0_snd,90,0);

while (int(gun_percent) < 98)

Save and run, now our gun goes ‘bang’ (
A Note on sound FX. Try to avoid long duration sound effects for things like guns. In our gun example, if the sound played too long or the animation too fast we would have times where the sound wouldn’t play when the gun fired. This is because the played length of the sound was longer duration then the full animation cycle. We could force the sound to stop playing via script but that would be noticeable. Better is to just use short playing sounds.

Gun Muzzle Flash:

What’s a gun without it spitting out some fire flash. Typically there is 2 ways to handle a muzzle flash, by particle effect, or by sprite. I’ve seen a few mdl methods as well but that takes some extra time to pull off right.

For this gun we are going to use the sprite method because it’s easy. So I need a sprite first that looks like a gun flash that rolls away from the view. I made this one up, it has 17 frames (thus the name +17gunflash.bmp animated sprites need to start their names with a ‘+’ followed by the number of frames)

[image: image46.png]
The animation normally runs from left to right across the bmap and each ‘frame’ in the film strip MUST all be the same size. I use the freeware tool Irfan to put these together because it’s really simple to use. I make each frame (at 128x128) then using Irfan I load them all in sequence into a single panoramic image which gets saved as a single image file.

I then create a NEW view entity like I did with the gun.

entity gun0_flash

{

type = <+17gunflash.bmp>;

view = camera; // this is visible in the view called 'camera'

flags = visible,overlay,flare;

scale_x = .1;

scale_y = .1;

scale_z = .1;

x = 36;

y = -8;

z = -4;

}

I set the overlay flag to make the black areas of the sprite not visible (like we did with our panel) and I set it to flare flag as well. This makes it bright as well as semi transparent to eliminates some of the black outlining sprites tend to have.

I start its X/Y/Z at the same location the gun0 is at, then I open the gun01 model in MED and get an aprox X location where my guns muzzle exit point would be.

[image: image47.png]
So I add 5 to my gun0 X for my starting muzzle flash entity X value

Save and run. I notice the flash is too big, so I scale the flashes X/Y/Z down until it looks right to me.

After scaling the entity has shifted downwards location (because sprite origins are aligned along the bottom edge of the image) because scaling is based around the origin point of the entity.

So I shift the entity’s Z upwards a quant or 2 until I find where it looks good and I push it our a bit (more +X) so its not so close to the gun that I can’t see it.

Now that it looks good we need to animate it. I’m going to run off the gun_percent for our sprites animation speed so it stays in sync with the gun animation. If you read up on ent_animate, you will notice it says to use it for sprites, but one of the parameters for ent_animate is the frame scene name. Sprites have no scene name but we still need to fill that parameter and the manual doesn’t say what to do here nor did anyone on the 3DGS forums know. Many trials and errors I found you can use the ‘empty’ string. Empty string in C/C++ is 2 quotes together with no spaces (“”). Though technically the same as NULL, if we plugged NULL, ent_animate uses NULL as a parameter flag to reset the animations to frame 0.

I place my animation line before my gun animation line (remembering my sequence of how a gun works, flash discharge before slide moves). I also remove my visible flag from my gun0_flash entity, then add in to turn on my flash visibility when fired and off my flash visibility when the animation sequence is over.

snd_play(gun0_snd,90,0);

gun0_flash.visible = on;

while (int(gun_percent) < 98)

{

ent_animate(gun0_flash,"",gun_percent,ANM_CYCLE);

ent_animate(gun0,"shoot",gun_percent,ANM_CYCLE);

gun_percent = (gun_percent+10*time)%100;

wait(1);

}

gun0_flash.visible = off;

Save and run. Looks good but for one thing. The flash is flat looking, no depth. We can fix that easy, by just moving down the +X axis as it progresses in its animation. That way the sprite moves out away from the gun towards the horizon at the 0/0/0 screen center .

snd_play(gun0_snd,90,0);

gun0_flash.visible = on;

while (int(gun_percent) < 98)

{

ent_animate(gun0_flash,"",gun_percent,ANM_CYCLE);

ent_animate(gun0,"shoot",gun_percent,ANM_CYCLE);

gun_percent = (gun_percent+10*time)%100;

gun0_flash.x += gun_percent*.01;
// moves flash sprite out away from the gun as it animates

wait(1);

}

gun0_flash.visible = off;

gun0_flash.x = 36; // resets the sprite back to its start location before the next shot
gun_percent = 0;

I had to twiddle with the *.01 for a bit to get it to a good looking flash distance. At .1 (which I started at) it looked like a flame thrower (.

Remember, the gun and flash are only in the 2D view. They don’t exist in the 3D game level. We need to keep that in mind for the rest of working on this gun. I’d insert a final screen shot of it in action but a single picture won’t do it justice.

Expended cartridge:

Not much of a ballistic gun if it doesn’t kick out the expended cartridges. So I create a 3rd view entity using an expended bullet model and start it at the same location as the gun0. While the engine is running and the bullet is on the screen, I twiddle the X/Y/Z and scale until I get it about where I want it. Not lined up on the gun at rest but where the bullet would appear during the animation when it gets kicked out.

[image: image48.png]
entity gun0_brass

{

type = <brass.mdl>;

view = camera;

flags = bright; // bright makes it a bit shiney

layer = 3;

scale_x = .2;

scale_y = .2;

scale_z = .2;

x = 26;

y = -9;

z = -4;

}

Now, I want the shell to rotate, like doing a back-flip around its tilt axis at a random but quick pace.

gun0_brass.tilt += (20+random(10))*time;

Move to the right at a randomized speed

gun0_brass.y -= (.5+random(1))*time;

And I want the shell to move upwards at a slightly random speed.

gun0_brass.z += (.5+random(1))*time;

I also need a point in the gun animation so the shell does appear and start its movement (roughly where I had it visually planned when moving it around)

while (int(gun_percent) < 98)

{

ent_animate(gun0_flash,"",gun_percent,ANM_CYCLE);

ent_animate(gun0,"shoot",gun_percent,ANM_CYCLE);

if (int(gun_percent)>20)

{

gun0_brass.visible = on;

gun0_brass.tilt += (20+random(10))*time;

gun0_brass.y -= (.5+random(1))*time;

gun0_brass.z += (.5+random(1))*time;

}

gun_percent = (gun_percent+10*time)%100;

gun0_flash.x += gun_percent*.01;

wait(1);

}

Then to finish the first half of this, after the gun finishes animating we need to reset the shell to start location and turn off its visible.

gun0_flash.visible = off;

gun0_brass.visible = off;

gun0_flash.x = 36;

gun0_brass.tilt = 0;

gun0_brass.y = -9;

gun0_brass.z = -4;

gun_percent = 0;

wait(1);

Save and run.

[image: image49.png]
We now need to be able to create our cartridge in the 3D world, toss it out to our right, have it fall to the ground making a ‘clinking’sound and lay at a random PAN angle. Then wait a duration and remove itself. Always looks kind of funny shoot up a bunch of bullets and no spent cartridges laying around.

We cannot allow too many to be laying around else we could crash our game with too many entities.

First I load up a .wav for the clinking sound.

sound empty_brass = <emptybullet.wav>;

Then I need to calculate a location off to the player’s right. I want it somewhat random distance and in a random arc.

I set up a randomized distance vector from 30 – 90 quants distance and store it in the temp engine vector

vec_set(temp,vector(int(random(60)+30),0,0));

I then take that vector and rotate it to my players right (pan – 90) then add +/- 0-40 range for an arc

vec_rotate(temp,vector(my.pan-90+(random(80)-40),0,0));

I now move this vector to in relative relationship to the player entity

vec_add(temp,my.x);

From there I use the temp vector we just made to create an empty shell cartridge at this location

ent_create("brass.mdl",temp,drop_brass);

[image: image50.jpg]
(picture showing how this process works to rotate a vector)

vector command creates a vector

vec_rotate rotates a vector based on an given vector angle and stores the new location in the first vector

vec_add adds 2 vectors together and stores that into the first vector

I place all these lines after the animation loop and resetting of values:

}

gun0_flash.visible = off;

gun0_brass.visible = off;

gun0_flash.x = 36;

gun0_brass.tilt = 0;

gun0_brass.y = -9;

gun0_brass.z = -4;

gun_percent = 0;

vec_set(temp,vector(int(random(60)+30),0,0));

vec_rotate(temp,vector(my.pan-90+(random(80)-40),0,0));

vec_add(temp,my.x);

ent_create("brass.mdl",temp,drop_brass);

wait(1);

OK, our shell is going to appear at the temp location off on our player’s right side. Now we are going to set up an action for this model. This action will make the model be placed on the floor, rotate its pan angle to a random direction, play the clicking sound then after a short time fade it out and remove itself.

action drop_brass

{

wait(1); //wait one frame

my.passable = on; // make it passable so player can walk through it

my.visible = on; // make it visible

my.pan = random(360); //rotate its pan random 360 degrees

vec_set(temp,my.x); // sets up a trace to put it on the floor same as in our player_move

temp.z -= 4000;

trace_mode = ignore_me+ignore_sprites+ignore_models;

my.z -= trace(my.x,temp);

sleep(1); // wait 1 second
ent_playsound(me,empty_brass,100); // have the entity play our clink sound at 100% volume

sleep(15+int(random(20)+1)); // wait 16-35 seconds

my.transparent = on; // makes the model transparent (can see through it)

my.alpha = 100; // sets model at starting fully opaque

while (my.alpha > 0)

{

my.alpha -= .3*TIME; // reduces the shells alpha (making it more transparent) until its totally transparent

wait(1);

}

ent_remove(me); //once its totally transparent it removes itself

}

Save and run.

[image: image51.png]
Lays them out in a nice random dispersal (.

We need to edit the gun script to check if we have any ammo, if not then not to shoot. If so, it reduces our ammo count down by 1 as the gun shoots.

We insert an if () { } between the while (mouse_left) and the while (percent) and also reduce the count here as well

 while(mouse_left)

{

if (my.ammo > 0) // if I got ammo then shoot

{

snd_play(gun0_snd,90,0);

gun0_flash.visible = on;

my.ammo -=1; // shooting now, so reduce ammo count by 1

while (int(gun_percent) < 98)

With this now we NEED ammo to even shoot. (
