Shooting a Bullet:

Now we need to get to the good stuff. Actually making a bullet shoot form the gun and hit something, hitting anything at this point will be nice but we want to concentrate on making an accurate targeting system right off the bat. This is a common question in the 3DGS forums “how can I make the gun shots accurate?”

First we need a cross hairs on the screen so we know what we are aiming at. Typical FPS cross hairs stays dead center of the screen so that’s what we will go with.

I find a nice cross hairs .bmp image to use:

[image: image1.png]
I then create yet another view entity and place this at y=0 z = 0 (center of screen) and a little bit of +x so its visible. I set overlay and flare flags besides visible so that way it ignores the black areas. Some twiddling with scale and +X depth and I find a fair looking spot to leave it.

[image: image2.png]
entity cross_hair

{

type = <cross2.bmp>;

view = camera; // this is visible in the view called 'camera'

flags = overlay,visible,flare;

layer = 0;

scale_x = .05;

scale_y = .05;

scale_z = .05;

x = 50;

y = 0;

z = 0;

}

I want to make it so I can turn this on and off with a press of the ‘H’ key (for HUD, Heads Up Display). I place this in my game.wdl:

//

// toggle hud on/off

//

function toggle_hud()

{

cross_hair.visible = (cross_hair.visible == off);

}

//

//

// main game function

//

function main()

{

freeze_mode = 1;

level_load ("TLlevel3.wmb");

wait(2);

freeze_mode = 0;

on_space = operate;

on_h = toggle_hud;

}
How does this line work?

cross_hair.visible = (cross_hair.visible == off);

notice, I am assigning a value to cross_hair.visible so everything on the left side of the = is clear, it’s the right it’s that may throw you.

What can be contained inside () symbols in script? Parameters (var1,var2), expression (3+4), or conditional (>, <, ==). Since there is no function name its not a function call so its not parameters. There is no mathematics calculations being done so its not an expression. So it’s a conditional because of the ==

The IF is then implied by the compiler because of the conditional in the (==) and an conditional returns a value during its check 1 = true, 0 = false. ON and OFF are just engine define variables that are ON = 1, OFF = 0. SO looking at our conditional if cross_hair.visible is off the conditional is true and that true value is being assigned to cross_hair.visible = true so now its set to ON (
If cross_hair.visible == off is not true (because its ON) the conditional = 0 which is then assigned back to cross_hair.visible, making it now == OFF.

IF we made a typo and only got one = into the conditional:

cross_hair.visible = (cross_hair.visible = off);

this would be no longer a conditional but an assignment (assigning off to cross_hair.visible). Unfortunalty this is a double assignment line: cross_hair.visible = cross_hair.visible = off; which will generate an error.

It’s a nice way to shorthand and make more efficient to do the same thing:

If (cross_hair.visible == off)

{

cross_hair.visible = ON;

}

else

{

cross_hair.visible = ON;

}

both are the EXACT same thing, just the first is faster to execute.

Save this. Now we can turn the targeting cross hairs on and off.

Typically the mouse is used now to handle aiming because the keyboard is clunky to pan left/right and look up/down. We need to find what to read off the mouse for input for left/right movement and up/down movement of the mouse.

If you recall we used in the player movement key_force.x .y for movement using the cursor keys. .X for left right pan adjustment .y for forward/backwards. For the mouse we have mouse_force .x and .y as well. Since we want it so when the mouse is moved to the left/right it not only adjust the view but turns the player entities pan as well, and the up/down mouse movement adjusts our camera.tilt, so we will be modifying our player_move script for this part.

function update_camera()

{

// camera updates

//vec_set(temp,my.x);

//vec_sub(temp,camera.x);

//vec_to_angle(camera.pan,temp); // now MY looks at YOU

Vec_set (camera.x,my.x);

camera.z += 27;

camera.pan = my.pan;

my.temptilt += (key_pgup - key_pgdn + mouse_force.y)*4*time;

// turn players facing

player.pan -= (key_force.x+mouse_force.x)*5 *time;

Save and run. Now we can swing the camera around and aim at targets plus control our players direction with the mouse.

[image: image3.png]
Now we are ready for our bullet.

For an accurate targeting system and make things look good visually we need a vector point to shoot at that the cross hairs points at and that point should be different every time we press the trigger (left mouse button) based on the closest target in the cross hairs. To get that vector we need to draw a line from the center of the cross hairs straight out till it hits something. Sounds like a trace huh?

There is 2 ways we can do this and I’ll show you both. First, the harder way but very accurate.

We need a start point of our trace, that’s the center of the cross hairs

Since our cross hairs sits in a 2D view it doesn’t exist in the 3D world at all we need a way to convert its location in the 2D world to the 3D world. We can use the instruction vec_for_screen() for this.

Lets see how it works before we discuss it. Make this temporary function in weapons.wdl:

function spawn_sprite()

{

// spawn a sprite at mouse click position, 200 quants into the screen

temp.x = 399;

temp.y = 299;

temp.z = 200;

vec_for_screen(temp,CAMERA);

ent_CREATE("bulhole.tga",temp,NULL);

}

And add this line right after the left mouse click check in our weapon function

function run_weapons()

{

wait(1);

while(player != NULL)

{

if(mouse_left)

{

spawn_sprite();

NOTE: I changed the while(mouse_left) to IF. Do the same thing because sometimes the gun doesn’t stop repeating with the while conditional.

Then copy the bulhole.tga file from your template folder over to the FPS\Images folder.

Save and run.

[image: image4.png]
Left clicking will place a bullet hole sprite at 200 quants ahead of our player in the middle of our cross hairs.

Here is what is happening, vec_for_screen needs 2 parameters: a vector measured in pixels and the view which to do its calculation from. For the vector we need the center of the screen but we cannot sue the location of the crosshairs entity because that’s based on a different location system (0/0/0 is center of screen for a view entity while in pixels 0/0 is the upper left hand corner)

[image: image5.png]
so an 800 X 600 screen resolution the center point would be X = 399, Y = 299 and not 400 x 300 because our resolution starts its count at 0/0 to 799/599. If we were using multiple screen resolutions we could use a formula to in place of X and Y assignments to convert the current resolution to the ½ we need, but hard coding it is ok here.

For a Z parameter of the vector we want a distance INTO our view, rather like the +X for view entities, we just set an arbitrary 200 quants into the view for this test.

Now taking temp, our temp engine vector we assigned these values to, we plug that into the vec_for_screen instruction along with the name of the view:

vec_for_screen(temp,CAMERA);

This will take the values in temp, calculate a 3D level vector location based on that temp screen location in CAMERA view window and store it back into temp. Then we just used the ent_create to drop a sprite at that new TEMP to see if in our level.

For our trace though we need to 3D vector locations, start and ending locations.

Start:

Temp.x = 399;

Temp.y = 299;

Temp.z = 0;

Vec_for_screen(temp,camera);

End

X = 399

Y= 299

Z= 20000; // we set a point 20 thousand quants away

But we cannot set temp twice, we need to make ourselves a second global vector for temp vector use

Var temp2[3];

Temp2.X = 399;

Temp2.Y= 299;

Temp2.Z= 20000; // we set a point 20 thousand quants away

Vec_for_screen(temp2,camera);

Now we can run our trace.

Trace(temp,temp2);

But we need a trace mode before it:

Trace_mode = ignore_me + ignore_passable;

Trace(temp,temp2);

Notice we ignore the ME entity which in this case is the player entity (the function that falls this function is assigned to the player entity) se don’t want the players collision hull to effect our trace.

Now, our trace, if it encounters anything (not me or passable) it will set a default vector used by the engine called TARGET. That location stored in TARGET is where the trace hit something, like a wall or entity. IF it is an entity it hit, it will set the YOU default pointer to that entity.

We can use the TARGET vector to place out bullet hole sprite. So we modify our function to this:

Var temp2[3];

function spawn_sprite()

{

// spawn a sprite at mouse click position, 200 quants behind the screen

temp.x = 399;

temp.y = 299;

temp.z = 0;

vec_for_screen(temp,CAMERA);

temp2.X = 399;

temp2.Y= 299;

temp2.Z= 20000; // we set a point 20 thousand quants away

vec_for_screen(temp2,camera);

trace(temp,temp2);

ent_CREATE("bulhole.tga",TARGET,NULL);

}

[image: image6.png]
Now to simplify it a bit with the 2nd way. Does the first vector to screen seem to stand out as being familiar to something else? It should

temp.x = 399;

temp.y = 299;

temp.z = 0;

vec_for_screen(temp,CAMERA);

this vec_for_screen is doing nothing more than calculating camera.x .y .z location, so instead of using this we can just set temp to camera vector

vec_set (temp.x, camera.x);

function spawn_sprite()

{

// spawn a sprite at mouse click position, 200 quants behind the screen

vec-set(temp.x,camera.x);

temp2.X = 399;

We can also replace the other vec_for_screen with a vec_rotate like we did with the empty bullet placement before.

function spawn_sprite()

{

// spawn a sprite at mouse click position, 200 quants behind the screen

vec_set(temp.x,camera.x);

vec_set(temp2,vector(20000,0,0));

vec_rotate(temp2,camera.pan);

vec_add(temp2,camera.x);

trace(temp,temp2);

ent_CREATE("bulhole.tga",TARGET,NULL);

}

[image: image7.png]
the TARGET vector is the important thing we need right now, that is going to set what direction our bullet travels. So now we are to that point we need to create the bullet itself and make it move towards that TARGET. This is usually where people get stuck. How can I create a bullet to appear at the end of my view entity gun barrel in the 3D level and then make it move to hit its TARGET?

We need a way to convert the a view entity X/Y/Z location to a 3D level vector location:

Lets look first at how the guns location is in relationship to the player.

[image: image8.png]
The view entity for our gun is situated X/Y/Z 28/-8/-6 from center of our view. Our camera view is situated XYZ player.x player.y player.z+27 and the cameras pan is based on the players pan so we are always looking down the player entities X axis. Now if we consider that in relationship to our player entity, the camera is at 0/0/+27 location, so our gun , if it was in the 3D world would be X+28 Y-8 Z-6 away from our camera X/Y/Z.

Now, we cannot just ADD the guns location to our camera location because lets say our entity was sitting at the level origin 0/0/0 and facing the +X axis. If we added the guns x/y/z the values would be correct.

Now lets turn our player entity around and face the –X axis. Adding the guns X/Y/Z would place the gun still at the +X axis so it would be behind us.

[image: image9.png]
Now trying to do a calculation of determining to add or subtract based off camera loc and gun loc based on PAN angle is a bit cumbersome. Besides we already have a routine that will set this up nice. Any Ideas? A hint, think in relationship to itself, the player entity is at 0/0/0.

We can use our vec_rotate:

Vec_set(temp,gun0.x);

Vec_rotate(temp,camera.pan);

Vec_add(temp,camera.x);

Notice we want to rotate and add based on the camera not the player because the camera Z elevation is not the same as the player.z and our gun location is based on our camera.

We change our function spawn_sprite to spawn bullet and edit it.

function spawn_bullet()

{

vec_set(temp.x,camera.x);

vec_set(temp2,vector(20000,0,0));

vec_rotate(temp2,camera.pan);

vec_add(temp2,camera.x);

trace(temp,temp2);

vec_set(temp,gun0.x);

vec_rotate(temp,camera.pan);

vec_add(temp,camera.x);

ent_CREATE("bulhole.tga",TARGET,NULL);

}

Now we can use temp as the location to create our bullet

Change the above ent_create line to:

Ent_create(“bullet.mdl”,temp,null);

Now take the spawn_sprite(); line and move it down to just before the ammo -=1; line and change it to the new function name:

while(player != NULL)

{

if(mouse_left)

{

if (my.ammo > 0)

{

snd_play(gun0_snd,90,0);

gun0_flash.visible = on;

spawn_bullet();

my.ammo -=1;

while (int(gun_percent) < 98)

Save and run it.

[image: image10.png]
(I turned to the right a little so you could see where the bullet was created)

Now that we can get a bullet entity to appear in the 3D world we need for it to move in the direction of our TARGET vector. The manual already has a nice function for this, we can cut and paste it and just a little modification.

function turn_towards_target()

{

// get the direction from the entity MY to the TARGET

vec_set(temp,TARGET.x);

vec_sub(temp,my.x);

vec_to_angle(my.pan,temp); // now MY looks at TARGET
}

Then we make a simple action script just to get our bullet moving

action bullet_move

{

turn_towards_target();

while (my.skill20 <10000)

{

my.skill20+= ent_move(vector(2,0,0),nullvector);

wait(1);

}

}

edit the ent_create line to add in the action

Ent_create(“bullet.mdl”,temp,bullet_move);

Notice, I’m storing the distance the bullet has moved into it’s own skill20 (ent_move returns the distance moved for that frame) and if reaches over 10000 it stops moving. The KEY point to make in ALL this process is there is NO wait/sleep instruction until after we set our target direction because we don’t want TARGET value to change between the time we trace for the left button click and the time the bullet starts to move.

Save/Run

[image: image11.png]
Our bullet should angle towards what ever now is closest that was under our targeting cross hairs when we clicked the left mouse button.

Its not fast right now and that’s good for testing, we can adjust speed later. What we need to do now is handle collision handling, when it hits a wall or an entity. Lets do the wall impact first. We want a the bullet hole image we used before to not only appear where the bullet hits, but to lay flat on the wall instead of how it was when we first used it.

So first we set up the bullets move_mode.

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH;

my.skill20+= ent_move(vector(2,0,0),nullvector);

We don’t want this bullet to glide if it hits a surface like we did with the player. Now we need 2 event types to handle:

Event_block

Event_entity

So we enable these in our entity action and then assign the entity an event handling function (which we have to make)

action bullet_move

{

turn_towards_target();

my.enable_block = ON;

my.enable_entity = ON;

my.event = bullet_event;

while (my.skill20 <10000)

{

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH;

my.skill20+= ent_move(vector(2,0,0),nullvector);

wait(1);

}

}

function bullet_event()

{

if(EVENT_TYPE == event_block)

{

}

if(EVENT_TYPE == event_entity)

{

}

}

Pretty simple by now as we’ve seen all this before. For our block we want our bullet to leave a bullethole sprite then we decide, do we want the bullet to bounce off the wall or stop. Stop is easy, we just ent_remove the bullet, so lets do a bounce, so you can see how that’s done, to create ricocheting ammo (.

I load up a ricocheting sound and then I use the engines pre defined instruction BOUNCE to adjust the bullets angles. I also set up the bullets to be at 100 ambient and flagged to BRIGHT so they are visible and make a slight movement blurring/streak effect.

sound b_bounce = <bulletricochet.wav>;

if(EVENT_TYPE == event_block)

{

ent_playsound(me,b_bounce,100);

vec_to_angle (my.pan, bounce); // bounce direction

}

The BOUNCE instruction calculates a new facing angle (pan/tilt) based on the angle the object original hit the surface at.

[image: image12.png]
(bouncing bullets. Darn hard to get a screenshot of the ‘blurring’ effect to the bullet bright flag will cause during runtime.)

I notice the bullets maximum distance is just too much so I cut it in half.

while (my.skill20 <5000)

{

now for the bullet hole sprite.

The real trick of getting the bullet hole on the surface is orientating it to the surface angles. The surfaces angles is called NORMAL, the Pan/Tilt direction it faces. Every visible surface, be it a block, map entity, model or sprite has normals. Doing a trace to a surface will set the engines predefined vector called NORMAL to the angles of that surface. There are other instructions that also set that vector, one of them is BOUNCE.

First we create our bullet hole sprite entity making sure I place it AFTER my bounce instruction (to be sure the NORMAL vector is being set).

.

if(EVENT_TYPE == event_block)

{

ent_playsound(me,b_bounce,100);

vec_to_angle (my.pan, bounce); // bounce direction

ent_create("bulhole.tga",my.x,bullet_hole);

}

I place it AFTER my vec_to_angle bounce instruction because BOUNCE will set my surface normal to NORMAL vector so I don’t have to. Then in my bullet_hole action (that I make) I align the sprite to the NORMAL, scale it down a bit so its not so big, I turn on the sprites Oriented flag ON so it always faces based on its OWN pan/tilt/roll angles otherwise a sprite will always turn to face the camera view. Finally set its flare and overlay flags (and since flare gives it transparency I set alpha to 100 so it’s NOT transparent)

action bullet_hole

{

vec_to_angle(my.pan, NORMAL);

my.scale_x = .5;

my.scale_y = .5;

my.scale_z = .5;

my.oriented = on;

my.alpha = 100;

my.flare = on;

my.overlay = on;

}

Save and run

[image: image13.png]
One final bit on our bullet holes, like our empty bullet cartridges, we don’t want them laying around too long else we can get too many (after all, each are entities and they can add up fast too and exceed our max entities parameter) so lets plug into our bullet hole action a fade out and ent_remove. Also we need to make sure these bullet holes are set to passable, else our bullets can sometimes get stuck in them.

action bullet_hole

{

vec_to_angle(my.pan, normal);

my.scale_x = .5;

my.scale_y = .5;

my.scale_z = .5;

my.oriented = on;

my.alpha = 100;

my.flare = on;

my.overlay = on;

my.transparent = on;

my.passable = on;

sleep(5);

while (my.alpha > 0)

{

my.alpha -= .25*TIME;

wait(1);

}

ent_remove(me);

}

[image: image14.png]
(yellow circle shows a stuck bullet because the bullethole sprite isn’t passable)

Just to be safe, we are going to increase the number of maximum entities a bit using the MAX_Entities instruction. Placing it in our MAIN function right at the start because MAX_ENTITES must be set before ANY level is loaded.

function main()

{

max_entities = 3000;

freeze_mode = 1;

level_load ("TLlevel3.wmb");

wait(2);

freeze_mode = 0;

on_space = operate;

on_h = toggle_hud;

}

NOTE: by adjusting MAX_ENTITIES it reserves computer RAM. Here is how it works. A map level normal reserves 30 NEXUS of memory space for entities. 1 NEXUS = 1kilobyte of memory, and maximum amount of default entities allowed is 10* NEXUS, or 300 entities for a default level. You can manually increase NEXUS count under the levels File-> Map Properties. You can also reserve memory by setting a maximum entity count for your game with MAX entities. This memory is reserved for storing the data for each entity. X/Y/X angles, skills, flags, model file and so on. IF you use a very BIG/Complex model/sprite or map entity for an entity YOU HAVE to increase NEXUS count to cover the model because its extra data for skin(s) and vertexes/polygon faces needs more memory.

This should point out something important to you with entities. ALL parameters to an entity, once assigned an action are reserved, whether you use them or not (like skill variables). Even if you don’t use them, an entity still has skills 1-100 flags 1-8 and so on, just empty (0). So, it’s a good idea to use them skills when you can vs. using too many GLOBAL variables and the like which could be handled by skills and flags. You can even use a ‘dummy’ entity or 2 to store extra data. Make an invisible/passable flagged entity, then just use its skills/flags to store data.

3rd person camera you could do the same have an ENTITY follow the player around that is invisible and the camera stays at that entities location. Serves then 2 fold processes. Collision detection with slide/glide for the camera and store extra data for the player.

Bullet Hitting Entities:

The gusto of shooting in a FPS to hit the badguys. We still keep our bullet slow for now so we can see what its doing. What’s the main points of hitting an entity? Doing damage to the target and then removing the bullet from the game.

Lets make a target to hit. I’ll use a map entity.

[image: image15.png]
Now I will make an simple action for it to give it some health and set a loop with a condition if its got health its to wait() when the loop ends (no more health) it removes itself.

//uses: health

action pratice_target

{

my.ambient = 80;

my.health = int(random(50)+1); // health from 1-50

while(my.health >0)

{

wait(1);

}

ent_remove(me);

}

Now I set up my bullet event for event_type entity so that it also checks if the entity has health and if so it inflicts 10 damage to the entity it hit (YOU entity pointer is set to the entity this bullet hit). Then remove that bullet from the game.

//uses: health

function bullet_event()

{

if(EVENT_TYPE == event_block)

{

ent_playsound(me,b_bounce,100);

vec_to_angle (my.pan, bounce); // bounce direction

ent_create("bulhole.tga",my.x,bullet_hole);

}

if(EVENT_TYPE == event_entity && YOU.health >0)

{

YOU.health -=10;

ent_remove(me);

}

}

Assign that action to our target. Save level, build/update entities and run.

You will probably get an error running this the moment the target entity tries to remove itself:

[image: image16.png]
Why’s this? If we look up the error 1515 in the manual it’s not in there, but we can get a hint from 1514. Which is an invalid handle error. What we are dealing with here is an invalid pointer error (the pointer ME). Manipulating the existence in an event function is can result in some ugly pointer errors, especially with moving entities.

MANUAL: Event functions are actually executed immediately during the instruction of another entity that caused the event, like a ent_move, SCAN, or trace instruction. The event function itself normally should only transfer information to the entities' main function - it shouldn't perform instructions that can trigger events itself, displace entities, or change anything else in the level. Thus instructions like ent_move, ent_create, ent_remove, trace etc. must be avoided here! Otherwise all sorts of bad things can happen, like two entities endlessly triggering each other's event (the game could freeze in that case).

I put ent_remove in bold to point out this is exactly what is happening here. What is going on is the bullet entity has already been removed, but the action is still running so the entity is still moving, so it’s still triggering the entity event because its not actually removed until AFTER it completes its move for the frame.

MANUAL: If for some reason the event function must perform such 'critical instructions', they must be preceded by a wait(1) for delaying them to the next frame. Then it's safe.

This allows the entity to complete its movement for the frame, it will then be removed at the start of the next frame. Ideally though it is best to use a flag or some entity skill value, and in this case set its flag, then back in the action if that flag is true, then remove.

//uses: health

function bullet_event()

{

…

if(EVENT_TYPE == event_entity && YOU.health >0)

{

YOU.health -=10;

my.flag1 = ON;

}

}

action bullet_move

{

turn_towards_target();

my.enable_block = ON;

my.enable_entity = ON;

my.event = bullet_event;

my.ambient = 100;

my.bright = on;

my.flag1 = OFF;

while (my.skill20 <5000 && my.flag1 == OFF)

{

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH;

my.skill20+= ent_move(vector(2,0,0),nullvector);

wait(1);

}

ent_remove(me);

}

This is a MUCH better and safer way to do it. The work on this one gun is almost done (lets just up it’s speed to 20. Making it much faster but we can still see it move.

while (my.skill20 <5000 && my.flag1 == OFF)

{

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH;

my.skill20+= ent_move(vector(20,0,0),nullvector);

[image: image17.png]
(I copied several of the targets, in the action set my.overlay = ON and increased random health to 1-100)

Fun target practice with our new gun script (.

You may at times notice some typical problems such as you shoot the gun but no sound. This is due to your sound FX sounds are too long of play duration. Get a sound editor (I use Audacity because it is free and very versatile for editing and combining sounds) and chop out empty areas in the beginning and end of the sound files. You can also compress the sound some to make it shorter in play.

Switching Weapons:

For most weapons, our script will work great. Pistols, rifles, laser guns, rockets etc. We just need to make it generic in form. We also need to implement our weapons handling to change weapons with pressing the 1-9 keys (and make sure only to use the weapons we HAVE picked up). So lets tackle that first, to get our weapon selection working.

First we need to add a couple more weapon view entities. I made 2 more for now, a rifle and a laser pistol (both from Acknex Unlimited site). Set them up the same method as my pistol. You may note, that when it comes to resizing the skin in MED you may sometimes not get the option to UNCHECK the adapt skin points checkbox (it will be grayed out).

[image: image18.png]
This is because of the original image size of the skin needs to be an even size in increments of 100. So you need to first export the skin image, then resize it in a paint program so it’s size is in increments of 100. The above image I would then adjust the sizes to 300 Width 100 Height.

[image: image19.png]
entity gun1

{

type = <gun02.mdl>;

view = camera; // this is visible in the view called 'camera'

//flags = visible;

x = 22;

y = -6;

z = -6;

}

[image: image20.png]
entity gun2

{

type = <gun03.mdl>;

view = camera; // this is visible in the view called 'camera'

flags = visible;

x = 30;

y = -8;

z = -9;

}
We already have an array to keep track of IF we have a weapon or not:

Var weapons[10]; // 0-9 weapon flags 0= no weapon 1 got that weapon

We need a variable to know which weapon we have currently selected

Var current_weapon = 0;

We need another array to store what entity will be associated to what weapon

Var weapon_selection[10]; // stores entities for each weapon

And we need a pointer for the current selected weapon entity

Entity* selected_weapon;

I place these right after my first array.

We want our gun we scripted to be weapon 1 going into index 1 of our arrays. Even though arrays start with 0 for indexing we want 0 to be our last weapon. This way we can easily handle key presses across our number keys 1-0. Since 0 is going to be our NO Weapon selected choice for this tutorial lets handle that first.

Looking in the manual on keyboard mapping chart we want to look at 2 things:

The ‘ON_ ‘for keys 1-0 and the ‘scan codes’ for each key 1-0. We see the scan codes run 2-11 for keys 1-0 respectively. I.e. ON_3 the scan code is 4. As we know the ON_ calls a function and that we do NOT put the () after the function name in that call. I.e. ON_space = space_bar_function;

ON_ does however pass a parameter by default, the scan code of the key pressed.

So, if I did ON_1 = call_this; the scancode ‘2’ would be passed to the function call_this anytime I pressed the ‘1’ key. ON_ as we stated passes the scan code of the key pressed, so in our function we will make to select weapons we need to pass into it that parameter.

Function select_weapon(num_select)

The value num_select will be ONLY usable inside this function and only valid for the instance that is created ON the function call this is called a local variable. Notice we don’t define the num_select with a var num_select. This is already defined within the parameter list of the function itself ().

Function select_weapon(num_select);

{

if (weapons[num_select-1] == 1) // if the weapon has been picked up yet

{

}

}

if (weapons[num_select-1] == 1) In this line we check to see if in the array Weapon at the index of num_select (the scan code passed of 2-10) –1 is equal to 1. 1 will be our flag that the weapon has been picked up. So If I pressed the ‘1’ key its scan code is = 2 which goes into num_select parameter 2-1 = 1. So if we had picked up our weapon[1] weapon (==1 so its flagged yes we got it) we can then make the selected weapon visible on the screen, make the last weapon no longer visible. But how to do that from an array? We cannot plug pointers into an array.

There is another form of data like a pointer we CAN use. It is called a ‘handle’. A pointer is reference to something within memory, an entity, a function, a panel, a text, an image and so on. Pointers though are volatile, meaning they can change and be changed. A handle though is a numeric reference to something in by way of its address location IN memory. Think of memory as mailboxes in a post office. Each box has a unique number and mail goes to the correct person based on that BOX number. A handle is much like that P.O. Box number, it’s the numeric address to the location in memory where you can find that entity, function, panel, image and so on. Handles also can not be changed. As long as that referenced item is still in memory, its handle address will always be the same. I.E. we cannot assign a handle for one entity to another entity simply because its location in memory won’t match the handle address.

We CAN though store handles into a variable though because it is a numeric value. To get the handle value we can use the instruction:

Handle(object);

Object is the object we want to get its handle from, like the name of the entity or a pointer to that entity. This instruction returns the handle value. So it would be like

Variable = handle(object);

This handle will ALWYS point to this particular object so long as the object exists in memory.

So we convert each of our gun view entities into handles and store them into our weapon _selection array:

function run_weapons()

{

weapon_selection[1] = handle(gun0); // set up weapon handles

weapon_selection[2] = handle(gun1);

weapon_selection[3] = handle(gun2);

wait(1);

while(player != NULL)
We also want to set some temporary starting values for testing. I.e. that we have picked up all 3 guns and the gun0 will be our starting gun visible.

function run_weapons()

{

weapon_selection[1] = handle(gun0);

weapon_selection[2] = handle(gun1);

weapon_selection[3] = handle(gun2);

// temp set up

weapons[1] =1;

weapons[2] =1;

weapons[3] =1;

current_weapon = 1;

selected_weapon = gun0;

wait(1);

And make sure our gun1 and gun2 are not flagged as visible anymore. Now we need a simple handling of changing our view entities.

Function select_weapon(num_select)

{

if (weapons[num_select-1] == 1) // if the weapon has been picked up yet

{

selected_weapon.visible = off;

current_weapon = num_select-1;

selected_weapon = ptr_for_handle(weapon_selection[current_weapon]);

selected_weapon.visible = on;

}

}

First turn off the current selected weapons visibility.

Then assign our variable current_weapon the value for the new weapon 1-9

Now we have a handle to that entity stored in the weapon_selection array, so we have to convert it back to a pointer and assign it to our entity pointer selected_weapon. We use the ptr_for_handle instruction which converts a handle to a pointer.

Finally we turn on the selected weapon so it is visible.

We finish up this test by now needing calls to our select_weapon function.

function main()

{

max_entities = 3000;

freeze_mode = 1;

level_load ("TLlevel3.wmb");

wait(2);

freeze_mode = 0;

on_space = operate;

on_h = toggle_hud;

on_1 = select_weapon;

on_2 = select_weapon;

on_3 = select_weapon;
}

notice, as I stated we don’t pass a parameter, ON_ instruction automatically will pass a parameter of the scan code for the key pressed.

Save and run: Runs good lets us select weapons 1-3

[image: image21.png]
Gun0 pressed key ‘1’

[image: image22.png]
Gun1 pressed key ‘2’

[image: image23.png]
Gun2 pressed key’3’

Try it out now by changing the temp flag values if we have the gun or not (keep gun0 flagged as 1 because right now that is our starting entity)

// temp set up

weapons[1] =1;

weapons[2] =1;

weapons[3] =1;

change weapons[2] and weapons[3] between 1 or 0 values see that those you set to 0 won’t show up.

As you should have seen if you flagged that gun as 0, you couldn’t swap to that gun. Typically in a FPS you would have an animated switching weapon. Where the hand(s) would go down, hear a sound then hand come back up with the new weapon. These are just 2 animations, one for each weapon looped forward or backwards depending on if picking up or putting down. For this tutorial I won’t do this but look here:

Function select_weapon(num_select)

{

if (weapons[num_select-1] == 1) // if the weapon has been picked up yet

{

// animate and sound for putting weapon away

selected_weapon.visible = off;

current_weapon = num_select-1;

selected_weapon = ptr_for_handle(weapon_selection[current_weapon]);

selected_weapon.visible = on;

// animate and sound for picking weapon up

}

}

The blue remarks is the locations where you would plug the 2 animation and sounds in. Since we have covered allot of animations, including running the same one forwards and backwards, it should be easy for you to plug in.

Lets add in the ability to have no weapon selected. We will use the ‘0’ key for this.

First I will make a NEW model. All I will place in this is a single vertex (engine has a problem with a totally empty model file so I need a vertex at minimum) and I called it empty.mdl

I load it up as a view entity like all the rest and set it at 0/0/0 location.

entity empty

{

type = <empty.mdl>;

view = camera; // this is visible in the view called 'camera'

x = 0;

y = 0;

z = 0;

}

weapon_selection[0] = handle(empty);

weapon_selection[1] = handle(gun0);

weapon_selection[2] = handle(gun1);

weapon_selection[3] = handle(gun2);

// temp set up

weapons[0] =1;

weapons[1] =1;

weapons[2] =1;

weapons[3] =1;

current_weapon = 0;

selected_weapon = empty;

So now at start we are set up with the empty view entity. But we need to change our select_weapon function to let us swap to the 0 entity because the scan_code for ‘0’ key is 11. That won’t work in our current function.

Function select_weapon(num_select)

{

if (num_select == 11)

{

// animate and sound for putting weapon away

selected_weapon.visible = off;

current_weapon = 0;

selected_weapon = ptr_for_handle(weapon_selection[current_weapon]);

}

else

{

if (weapons[num_select-1] == 1) // if the weapon has been picked up yet

{

// animate and sound for putting weapon away

selected_weapon.visible = off;

current_weapon = num_select-1;

selected_weapon = ptr_for_handle(weapon_selection[current_weapon]);

selected_weapon.visible = on;

// animate and sound for picking weapon up

}

}

}

And add in the on_1 = select_weapon; with our other on_ instructions in the game.wdl

Now we can swap around our weapons and even deselect the current weapon (. We now need to start modifying our shooting part of the script to handle each weapon. This will be a combination of modifications and adding more to our scripts at the same time, so we will do it in parts.

First, we make sure if the current_weapon = 0 we cannot shoot

if(mouse_left && current_weapon !=0)

and we change the gun animation for the currently selected weapon

while (int(gun_percent) < 98) // it will never be 100 because of %

{

ent_animate(gun0_flash,"",gun_percent,ANM_CYCLE);

ent_animate(selected_weapon,"shoot",gun_percent,ANM_CYCLE);

Now I make sure both of my new guns are animated for shooting and that the scene is named “shoot” BEFORE I test this (
OK from here the guns animate and shoot the bullet, the rest of the modifications we need to take one step at a time. So lets start from the top, the sound. I dig up a sound for my rifle and a sound for my laser gun.

sound gun0_snd = <colt45.wav>;

sound gun1_snd = <m4.wav>;

sound gun2_snd = <lasergun.wav>;

Unfortunately we can’t assign a pointer or handles to an array for our sounds so we need to script in which sound to play based on our current_weapon value. So we will use our:

If

Else

 If

 Else

System.

if (my.ammo > 0) // if I got ammo then shoot

{

if(mouse_left && current_weapon !=0)

{

if (current_weapon == 1)

{

snd_play(gun0_snd,90,0);

}

else

{

if (current_weapon == 2)

{

snd_play(gun1_snd,90,0);

}

else

{

if (current_weapon == 3)

{

snd_play(gun2_snd,90,0);

}

}

}

If one sounds too loud just reduce its volume in the snd_play. We could actually place this in its own function as well.

function gun_sounds()

{

}

if (my.ammo > 0) // if I got ammo then shoot

{

if(mouse_left && current_weapon !=0)

{

gun_sounds();

gun0_flash.visible = on;

Now for the gun flash. For this our pistol’s gun flash will work fine for both the pistol and the rifle but for the laser we really won’t need a flash. We will have to pull out our flash from the gun loop and handle its animation and changes in its own function. This is going to take some modifications. We first start by defining a new array and an entity pointer to track our flashes. Also a variable for our weapon flash animation_percent.
var weapon_flashs[10]; // stores entities for gun flashes
entity* weapon_flash;

var flash_percent = 0;

then I copy my gun0_flash and rename the copy for gun1_flash and relocate it so it starts at the end of the rifle barrel

entity gun1_flash

{

type = <+17gunflash.bmp>;

view = camera; // this is visible in the view called 'camera'

flags = overlay,flare;

scale_x = .1;

scale_y = .1;

scale_z = .1;

x = 70;

y = -6;

z = -4;

}

Now I add into my set up of the handles for the flashes. Since the laser won’t be using the flash I can use the ‘empty’ view entity we made for the ‘0’ keypress.

function run_weapons()

{

weapon_selection[0] = handle(empty);

weapon_selection[1] = handle(gun0);

weapon_selection[2] = handle(gun1);

weapon_selection[3] = handle(gun2);

weapon_flashs[1] = handle(gun0_flash);

weapon_flashs[2] = handle(gun1_flash);

weapon_flashs[3] = handle(empty);

And we need a function now to handle the flash(s)

function gun_flashs()

{

var tempx;

weapon_flash = ptr_for_handle(weapon_flashs[current_weapon]);

if (weapon_flash != empty)

{

tempx = weapon_flash.x; // store flash start x location

weapon_flash.visible = on; // turn on flash

while (flash_percent <98)

{

ent_animate(weapon_flash,"",flash_percent,ANM_CYCLE);

weapon_flash.x += flash_percent*.01;
// moves flash sprite out away from the gun as it animates

flash_percent = (flash_percent+10*time)%100;

wait(1);

}

weapon_flash.visible = off; // turn off the flash

weapon_flash.x = tempx; // reset start X location of the flash

flash_percent = 0; // resets the flash animation

}

}

this is exactly what we did in our original loop , but now the flash animates and moves on its own because of our loop in this function. In fact this loop is just like our gun loop, just handles the flash animation.

In the main gun shooting we now remove any reference to animating the flash, we just need a call to this function.

if (my.ammo > 0) // if I got ammo then shoot

{

if(mouse_left && current_weapon !=0)

{

gun_sounds();

gun_flashs();

spawn_bullet();

my.ammo -=1; // shooting now, so reduce ammo count by 1

Lets do the same thing with the gun cartridge brass, our laser we don’t need any brass created. (you will have to excuse me if my using the word ‘brass’ seems confusing to you. I was in the army for 6 years and the word we used to mean “ empty ammo cartridge” is ‘brass’. So when I say brass, that’s what I mean)

var weapons_brass[10]; // store entities for brass

entity* weapon_brass;

function run_weapons()

{

weapon_selection[0] = handle(empty);

weapon_selection[1] = handle(gun0);

weapon_selection[2] = handle(gun1);

weapon_selection[3] = handle(gun2);

weapon_flashs[1] = handle(gun0_flash);

weapon_flashs[2] = handle(gun1_flash);

weapon_flashs[3] = handle(empty);

weapons_brass[1] = handle(gun0_brass);

weapons_brass[2] = handle(gun0_brass);

weapons_brass[3] = handle(empty);

I also create a variable flag to be sure only ONE brass piece is created every shot of the gun.

var did_brass=0;

Then we make a new function to handle the brass. This will contain the same stuff that is already in our gun shooting loop AND the ability to swap between models.

function handle_brass()

{

var temx; // temp values to store staring locations

var temy;

var temz;

var temtilt;

weapon_brass = ptr_for_handle(weapons_brass[current_weapon]); // same as the flash handling

if (weapon_brass != empty) // make sure this weapon uses any form of brass

{

did_brass = 1; // flag that says we are placing brass

temx = weapon_brass.x; // store the staring location values

temy = weapon_brass.y;

temz = weapon_brass.z;

temtilt = weapon_brass.tilt;

weapon_brass.visible = on; // turn on the brass visibility

while (gun_percent < 98) // I keep the brass movement clocked with the gun animation

{

weapon_brass.tilt += (20+random(10))*time; // cut and past here

weapon_brass.y -= (.5+random(1))*time;

weapon_brass.z += (.5+random(1))*time;

wait(1);

}

weapon_brass.visible = off; // turns the brass off

weapon_brass.x = temx; // rest values

weapon_brass.y = temy;

weapon_brass.z = temz;

weapon_brass.tilt = temtilt;

did_brass = 0; // reset the flag so can do another brass

vec_set(temp,vector(int(random(60)+30),0,0)); // just cut and past from gun loop

vec_rotate(temp,vector(my.pan-90+(random(80)-40),0,0));

vec_add(temp,my.x);

ent_create("brass.mdl",temp,drop_brass);

}

}

And we modify our gun shooting loop: (notice how small it has gotten and more modular)

while(player != NULL)

{

if (my.ammo > 0) // if I got ammo then shoot

{

if(mouse_left && current_weapon !=0)

{

gun_sounds();

gun_flashs();

spawn_bullet();

my.ammo -=1; // shooting now, so reduce ammo count by 1

while (int(gun_percent) < 98) // it will never be 100 because of %

{

ent_animate(selected_weapon,"shoot",gun_percent,ANM_CYCLE);

if (int(gun_percent) > 20 && did_brass == 0)

{

handle_brass();

}

gun_percent = (gun_percent+10*time)%100;

wait(1);

}

gun_percent = 0; // resets the percent to 0 for the next shot

}

}

wait(1);

}

Lets add in one more aspect to our script, Speed. Not all guns shoot at the same rate. We can adjust our animation speeds for each weapon. . The lower the set weapon_speed the slower the animation. 10 is a good start value for testing.

var weapon_speeds[10]; // stores weapon animation speeds

weapons_brass[1] = handle(gun0_brass);

weapons_brass[2] = handle(gun0_brass);

weapons_brass[3] = handle(empty);

weapon_speeds[1] = 10;

weapon_speeds[2] = 6;

weapon_speeds[3] = 10;

and we edit just ONE line to adjust the overall weapon speed (note: NOT the speed of the ammo) in our gun shooting loop That is the gun_percent line.

if (int(gun_percent) > 20 && did_brass == 0)

{

handle_brass();

}

gun_percent = (gun_percent+weapon_speeds[current_weapon]*time)%100;

wait(1);

We took the hard coded number out and inserted the array value using the current_weapon index number for which weapon selected. Its up to you to visually test each weapon animation speed to get it where you feel it LOOKS right.

As you can see, our script has grown allot larger now, BUT, we now have a more flexible weapon system started to handle multiple weapons. You may have also noted, I did a bit less explaining each and every line, as where each line NOT explained should now be familiar to you. In fact it gets a bit easier coding wise once you get more familiar with the workings of your script. Its more work taking other peoples work apart to see what exactly it is doing (but you can learn ALLOT by doing that).

