
 [image: image1.jpg]

A Tutorial on arrays in WDL

Version 1.4

Created Friday, July 21 2000, by Ronny Funk, member of SpectreSoft

Updated Tuesday, July 25 2000, added text arrays

Updated Thursday, July 27 2000, fixed some bugs and added some comments

Updated Tuesday, May 08 2001, changed some instructions to “new” WDL syntax

Updated Wednesday, May 09 2001, added a new example

Stay tuned for our new game Darkhunter!

 [image: image2.jpg]
 http://www.toxicgeneration.com/spectresoft/spectresoft.htm
Forward

In this little tutorial I want to give away some insights on using arrays in programming languages in common and using arrays in wdl. Things I plan to cover are questions like:

· What the hack are arrays ????

· Why and when should I use them ????

· How to use arrays in WDL

As you all know, conitec has made some significant changes to WDL. These changes have been released with A4 4.19. There are some other things in the works but those are still in beta. One of the most requested enhancements was the introduction of arrays to wdl. Well Conitec proved again that they are listening to their community very carefully (thanks again !!!!!).

What the hack are arrays?

People turn to computers for tasks like tracking monthly expenses or daily rainfall or quarterly sales or weekly weights. As a programmer, you inevitably will have to deal with large quantities of related data. Often, arrays offer the best way to handle such data in an efficient, convenient manner. Arrays are important features in many programs. They enable you to store several items of related information in an easy to process manner. In general, an array is a series of values of the same type, such as 10 numbers, stored sequentially in the computers memory. The whole array bears a single name, and the individual items, or elements are accessed by using an integer index. Speaking about types, the current implementation in wdl knows two different types of arrays:

· Numbers (6.3)

· String parameter of the text object

Have a look at the following WDL definition:

VAR Pal_DamageBonusTable[10];

It announces that Pal_DamageBonusTable is an array with 10 elements, each of which can hold a number value (this is implied by using the keyword var to define this array). The first element of our array is called Pal_DamageBonusTable[0], the second element is called Pal_DamageBonusTable[1], etc. up to Pal_DamageBonusTable[9]. Note that the numbering of array elements starts with 0 not 1 ! Each element can be assigned a number value (string arrays will be covered later on). For example you can have the following:

Pal_DamageBonusTable[5] = 2.52;

Pal_DamageBonusTable[6] = 1.66;

The numbers used to identiy the array elements are called subscripts, indices, or offsets. The subscripts must be integers, and, as we mentioned, the subscripting begins with 0. The array elements are stored next to each other in memory, as shown below :

1.66

2.30

1.55

4.66

 my_array[0]

 my_array[1]

 my_array[2]
 my_array[3]

In most programming languages, arrays can be defined to have one or more dimensions. Sometimes an array with one dimesion (i.e.: myArray[10]) is called a vector. Assume a programm needs to store 5 years of monthly rainfall for analysis, this would require the use of 60 (5 * 12) variables or an array with 60 elements, which is a very big improvement, however it would be nicer if we could keep each years data seperate. We could use five arrays with 12 elements, but that is clumsy and could get really awkward, if we decide to analyse 50 years of rainfall instead of five. Most other programming languages offer something called an array of arrays. The master array would have 5 elements, one for each year. Each of those elements, in turn, would be a 12-element array, one for each month. In C this would be defined as follows :

Static float rain[5] [12];

You also can visualize this rain array as a two-dimensional array consisting of 5 rows, each of 12 columns. Unfortunately this kind of definition is NOT ALLOWED in wdl’s implementation of arrays. But it is actually not a big deal because we can still use wdl to implement this, as we will see in a later example. Now we are at a point where we need to talk a little bit about some specialities with arrays in wdl‘s implementation, before we go ahead and actually code an example. As mentioned earlier, the current wdl implementation of arrays allows only arrays of type number (6.3) and string (will be discussed later). Arrays can only be used in expressions and together with functions, all „OLD“ instructions, like SET_STRING etc, are NOT aware of arrays. Within an expression, a variable given without an index is considered the first element of the array i.e.:

MyArray == MyArray[0]

This text comes directly from the wdl manual :

“For using arrays as vectors, some meaningful abbreviations for the first three numbers can be used: .x, .y, .z, .pan, .tilt, .roll, .blue, .green, .red. So the following references to numbers of arrays of length 3 are equivalent:

my_vec.x == my_vec.pan == my_vec.blue == my_vec[0] == my_vec

my_vec.y == my_vec.tilt == my_vec.green == my_vec[1]

my_vec.z == my_vec.roll == my_vec.red == my_vec[2]

Using those abbreviations produces better readable and a little faster scripts, because then the index is not examined at run time against exceeding the array length. The length of an array can be accessed through its length parameter. The advantage of using an array, compared to defining single variables, is that any numeric expression also can be given as index. Example:

temp = 0;

while (temp < my.array.length) {

 my_array[temp] = temp;

// sets the array to 0,1,2,3,... etc.
 temp += 1;

}

Care must be taken that the index never exceeds its maximum value, 4 in this example. Otherwise an error message will be issued during run time of our game. “

Let us go ahead and code a little wdl example to demonstrate the power of arrays. Assume we need to get 10 numbers from the player to process them in our game. In the old days (and i leave this as homework to you, dear readers) we would have used 10 different skills to store the players input. By using an array we can use a while loop to get the players input. Okay here is the wdl code to do it :

DEFINE size 10;

// makes it easier to change the code later

VAR numberArray[size];

// define our array with size elements

VAR Counter;

// used as array index in our loop

VAR TempVar;

// used as temporary storage

STRING playerInput " ";

// define input string

Function Get_PlayerInput () {

 Counter = 0;

// make sure we start with first element

 While (Counter < numberArray.length) {

// loop for each element in numberArray

 INKEY playerInput;

// get the input

 IF (RESULT == 13) {

// terminated with return ?

 Tempvar = str_to_num (playerInput);

// convert to number and store in tempVar

// necessary cause old instructions do not know

// anything about arrays

 numberArray[Counter] = tempVar;

// now store it in our array

 Counter += 1;

// point to next array element

 }

 }

}

I know, that this code does not have everything it should have, but I think it gets the point across. Go ahead and try to write the same function without an array. What would be required to request 20 numbers from the player ? There are many uses for arrays. Lets have a look at a better example. Assume we want to write a shooter. Our player can have different weapons, each weapon will have the following attributes :

· Indicator (1 = player has the weapon, 0 = player does not have the weapon)
· Bullet speed
· Damage
· Round type
We also assume, that during the game, we are going to have 5 different weapon types. We want to find a way to efficiently access this type of information without using to many entity skills. So what can we do now ? Guess what, we are going to use an array to store this information. The first thing we need to do is define our array to wdl. We have 5 weapons, each weapon will have 4 attributes (we are simulating a two dimensional array, see text above), this results in 5 * 4 = 20 array elements, so here is the wdl code to define our new array :

VAR weaponArray[20];

Very easy isn’t it ? Now how do we get values stored into out array ? Basically you have two choices. First assign the values directly as part of the definition, or second use wdl code to do the job, as we already did in our first example. For this example we are going to change the definition above and assign values directly to our new array :

VAR weaponArray[20] = 1, 0.5, 10, 1, 0, 1.5, 20, 2, 0, 0.7, 12, 1, 1, 2.0, 35, 3, 0, 3.0, 40, 4;

DEFINE numAttribs 4; //defines attributes per weapon used to compute the offset into the array

The define statement above will be used later to find the correct attributes according to the weapon we want to process. Now we have assigned 20 values to our weapon array. What do they mean ? Okay here it is :
weaponArray[0] = 1 // player owns weapon with id 0

weaponArray[1] = 0.5 // speed of weapon with id 0

weaponArray[2] = 10 // damage of weapon with id 0

weaponArray[3] = 1 // roundtype of weapon with id 0

weaponArray[4] = 0 // player does not own weapon with id 1

etc

How do we access this data in our weapon entity action ? Actually there are again (as usual in programming) different ways. In our code we are going to use one of the 48 entity skills to give an id to each weapon and a new variable called offset to compute the correct offset into our array, according to the weapn id we are going to process. This id will range from 0 to 4 for our 5 weapons. So somewhere in our code we do have the following definition :

DEFINE WeaponID, SKILL1;

VAR offset;

Now we are going to place a weapon model somewhere in our level, we are using WED to define a entity action to that weapon and we are going to set SKILL1 to a number between 0 and 4 ! Lets assume our player runs across one of the weapons and we need to update our weaponArray with this type of information. The weapons entity action could do the following (assume we ran across weapon with id 4) :

ACTION SomeWeaponAction {

Offset = MY.WeaponID * NumAttribs;
// offset will contain 16 (4 * 4) now

IF (weaponArray[offset] == 0) {

// do we own the weapon already

weaponArray[offset] += 1;
// no, set it to one

}

}

Easy, isn’t it ? And we have simulated a two dimensional array. If we wanted to access the weapon speed in the same action we could have used the following code :

DEFINE weaponSpeed, 1;

Offset =(My.WeaponID * NumAttribs) + weaponSpeed;

// now we are at the correct row of data for this weapon

// Check the weapon speed

IF (weaponArray[offset] == 0.8) {

}

That was pretty much it, I did not cover text arrays up to now, I promised I would so here it comes. As mentioned before, wdl knows about two different types of arrays, number arrays (covered earlier in this tutorial) and text arrays. I am sure you all have used text arrays as part of the text object to display texts on the screen. To be able to do this you need to define a text object in your wdl file and make it visible when appropriate. Have a look at the following code fragment:

DEFINE NumRaces, 9;

 TEXT Pal_Races {

 POS_X 20;

 POS_Y 20;

 STRINGS NumRaces;

 FONT Pal_InfoFont;

 STRING "Elf";

 STRING "Darkelf";

 STRING "Human";

STRING "Ogre";

STRING "Halfogre";

STRING "Troll";

STRING "Goblin";

STRING "Barbarian";

STRING "Dwarf";

LAYER 10;

 }

If you would use the instruction Pal_Races.VISIBLE = TRUE; the text object would display a list of races on your game screen. Now what has this to do with arrays? Good question, actually you just used a text array. Assume we had precomputed a race internally as a number and we wanted to display the textual representation of this precomputed race on screen, how can we do this? We are going to define some additional objects in our wdl file. Okay here is the code:

DEFINE TRUE, 1;

 DEFINE FALSE, 0;

 Var Player_Race = 0;

TEXT Pal_DisplayRace {

POS_X 20;

POS_Y 20;

FONT Pal_InfoFontt;

STRING " ";

LAYER 10;

 }

Function _Pal_SelectAndDisplayRace() {

Player_Race = INT(RANDOM(10);

Pal_DisplayRace.STRING = Pal_Races.STRING[Player_Race];

Pal_DisplayRace.VISIBLE = TRUE;

 }

Assume the result of our RANDOM instruction above is 2. Because the Pal_Races Text object has its VISIBLE flag not set it will not show up on our game screen. That’s exactly what we want, because this time we are using it as an array and we never want to display it. Okay back to the code. The instruction

Pal_DisplayRace.STRING = Pal_Races.STRING[Player_Race];

Will access the third element (STRING) of our text object Pal_Races. Why the third object? Remember the first object is Pal_Races.STRING[0]. Array elements begin with 0 not with 1. Okay if we assume that Player_race is equal to 2, the instruction above will assign the value „Human“ to DisplayRace.STRING. The rest of our little function is easy; we are going to display the textual representation of our race on screen.

Let’s have a look at another wdl function, I added this function to give you something you can use in your games. This function is a modification of the patrol_path function of actors.wdl. It allows you to have an actor follow an number of path names stored in a text array. This version doesn’t have obstacle avoidance, the original function does have it, but we do use it in our game Darkhunter, so I can’t give the code away (. Okay let’s move on and look at the function. I wanted to be able to let an actor follow a certain number of path’s, mainly to simulate something like streets in towns. We start to define some variables first:

var Pal_WayPoints = 0;

 var Pal_ReturnedWayPoint = 0;

 var FirstTime = 0;

// change the names below to whatever your path names are

 // if you want to add more, adjust the text object accordingly and

 // set the DEFINE below to PathNames.STRINGS - 1

DEFINE MaxPathNames, 3;

 DEFINE MaxPathNamesStrings, 4;

TEXT PathNames {

LAYER = 1;

POS_X = 0;

POS_Y = 0;

STRINGS = MaxPathNamesStrings;

FONT = Pal_attribfont;

STRING = "path_house1";

 STRING = "path_house2";

 STRING = "path_house3";

 STRING = "path_house4";

}

var i = 0;

As you can see I do use a wdl text object to store some path names. You have to use wed to add those names to your path definitions. Look at the comments above to adjust the definitions to what ever you need in your game. Surprisingly the Text object PathNames is a string array. Next we do write a little helper function; it’s only goal in life is to get a path name from our text array and attach it to our patrolling entity.

Have a look at the following code snippet:

//

 // function tries to find a path with it's name stored in the text array //

 // PathNames //
 //

Function _Pal_FindPath (func_index) {

 IFDEF Debug;

 str_cpy (msg.STRING, "Following Path ");

ENDIF;

 if (func_index > MaxPathNames) {

 return (0);

 }

 else {

 IFDEF Debug;

 str_cat (msg.STRING, PathNames.String[func_index]);

 ENDIF;

 return (ent_path(PathNames.String[func_index]));

 }

 }

The function uses a feature of wdl which we haven’t discussed yet. As you will see later, the function is called from our main patrolling function and an integer number is passed to it. _Pal_FindPath uses this parameter to access our text array. To avoid runtime errors, the function compares the parameter with our MaxPathNames definition and returns 0 if the parameter should be bigger. If everything is okay it uses the wdl ent_path function to attach the path to our entity and to return the number of waypoints acociated with it. Note that ent_path returns zero if no path with this name can be found. As explained earlier we do access our text array with the expression PathNames.STRING[func_index]. Func_index contains the number passed to our little function. Assume func_index would contain 2; in this case the function would try to attach path path_house3 to our patrolling entity. The next step would be to write the patrolling function.

Function _Pal_Follow_Paths () {

actor_init();

 i = 0;

 // try to find a path

if (!_Pal_FindPath(i)) {
 // try to find a path

 my._MOVEMODE = 0; // no path found reset move mode

}

else {

 // found a path

// find first waypoint and return number of waypoints

Pal_WayPoints = ent_waypoint(my._TARGET_X,1);

 IFDEF Debug;

show_message ();

ENDIF;

}

// move along the path

while (my._MOVEMODE > 0) {

// find direction

temp.x = MY._TARGET_X - MY.X;

temp.y = MY._TARGET_Y - MY.Y;

temp.z = 0;

result = vec_to_angle(my_angle,temp);

force = MY._FORCE;

// near target? Find next waypoint or look for next path

if (result < 10*time) {

// if the next waypoint is the first, we are at the end

// of this path, so see if there is another one

if (ent_nextpoint(my._TARGET_X) == 1) {

i += 1;

if (!_Pal_FindPath(i)) { // try to find a path

my._MOVEMODE = 0; // no path found reset move mode

 }

else {

// found a path

Pal_WayPoints = ent_waypoint(my._TARGET_X,1);

IFDEF Debug;

show_message ();

ENDIF;

continue;

}

}

 }

// turn and walk towards target

 actor_turnto(my_angle.PAN);

 actor_move();

 // Wait one tick, then repeat

 wait(1);

 }

}

 I won’t describe how the above function works, it’s almost like the patrol_path function from actors wdl. I just wanted to give you another example on how you can use string arrays to achieve your goals.

I hope this little tutorial did help you a bit on your way to become the master of arrays. They are a very important concept in every programming language. Some possible uses for arrays in games are:

1. Store attributes of party members in RPG’s

2. Store some patterned motions (important for NPC AI)

3. Keep track of game grids in games like tetris, blockout mahjong etc....

The possibilities are endless.

Okay, should you have questions or discover bugs in the sample code, just write a mail to ronny@cybersorcerer.de

Have fun and:

May the force be with you !!!!!

Ronny Funk May 2001

1
2

